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Abstract

In the intensive care unit (ICU), prompt therapeutic in-

tervention to hypotensive episodes (HEs) is a critical task.

Advance alerts that can prospectively identify patients at

risk of developing an HE in the next few hours would be

of considerable clinical value. In this study, we devel-

oped an automated, artificial neural network HE predictor

based on heart rate and blood pressure time series from the

MIMIC II database. The gap between prediction time and

the onset of the 30-minute target window was varied from

1 to 4 hours. A 30-minute observation window preceding

the prediction time provided input information to the pre-

dictor. While individual gap sizes were evaluated indepen-

dently, weighted posterior probabilities based on different

gap sizes were also investigated. The results showed that

prediction performance degraded as gap size increased

and the weighting scheme induced negligible performance

improvement. Despite low positive predictive values, the

best mean area under ROC curve was 0.934.

1. Introduction

In the intensive care unit (ICU), persisting hypotension

can result in end-organ damage. As a result, ICU clinicians

must be vigilant to detect and treat hypotensive episodes

(HEs) in a timely manner. However, this is challenging

to achieve in a real ICU for several reasons. First, the

amount of time that clinical staff can allocate per patient

is generally limited. Second, ICU data is not only mas-

sive in size but also heterogeneous in nature due to their

vastly different sources and suboptimal organization. In

the stressful context of busy ICUs it clearly would be of

considerable value to prospectively identify patients who

are at increased risk of developing HEs in the next few

hours, since it would facilitate efficient allocation of ICU

resources and minimize the latency to appropriate therapy.

Continuous and quantitative analysis of complex med-

ical data is a suitable task for a computer in comparison

with a human clinician. In particular, multi-parameter time

series of physiologic variables may contain subtle patterns

that are a signature of impending frank hemodynamic in-

stability, and such patterns are best identified and charac-

terized by machine learning algorithms. Real-time pat-

tern recognition may lead to advance alerts, and change

ICU monitoring from “reactive” to “predictive” [1]. The

importance of automated or semi-automated assistance in

analyzing multimodal ICU data is increasingly recognized

[2].

Following this rationale, the primary objective of this

study was to develop and evaluate performance of an auto-

mated HE predictor based on heart rate and blood pressure

time series.

2. Methods

2.1. Data compilation

We analyzed the heart rate (HR) and systolic, diastolic,

and mean arterial blood pressure (ABP) time series from

the adult patients in the Multi-parameter Intelligent Moni-

toring for Intensive Care (MIMIC) II database [3]. These

time series were either minute-by-minute or second-by-

second; the second-by-second time series were first made

minute-by-minute by taking the median every minute. A

total of 1,357 records, each corresponding to an ICU stay,

were compiled for analysis. The median duration of the

records was 90.9 hours with an interquartile range of 100.5

hours (Q1=49.2, Q3=149.8).

From each record, as many examples as possible were

compiled. Each example was a 5.5 hour segment that in-

cluded a 30 minute target window (the subject of predic-

tion), a gap between prediction time and the onset of the

target window, and a 30 minute observation window that

preceded the prediction time. Only the information in the

observation window was available to the predictor as in-

put. Four gap sizes were investigated: 1, 2, 3, and 4 hours.

This setup is graphically illustrated in Figure 1.

To compile examples, a 5.5 hour sliding window tra-

versed each record by advancing 30 minutes at a time. A

simple filter was utilized to discard examples with unsat-
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Figure 1. A graphical illustration of the gap, observation,

and target windows with respect to prediction time.

isfactory time series quality. For both HR and ABP time

series (in units of bpm and mmHg, respectively), the qual-

ity of a given data point was deemed satisfactory only if

the amplitude was between 10 and 250 AND the absolute

value of the rate of change was less than 20 per minute.

Only the examples in which quality was satisfactory for at

least 95% of the 5.5 hour window in ALL of the 4 time

series (HR and 3 ABP) were included in the study. The

reader should be aware that the rate of change threshold

rejected paroxysmal arrhythmias.

Furthermore, the target window in each example was

labeled either control or hypotensive. An HE was defined

as a 30-minute target window in which mean ABP (MAP)

was less than 60 mmHg and greater than 10 mmHg for

at least 90% of the window. The threshold of 60 mmHg

has often been used in previous hypotension studies (e.g.,

[4,5]). Any 30-minute target window that did not meet the

HE definition was regarded as a control.

At the end of the data compilation step, 130,325 control

and 3,953 hypotensive examples were compiled for subse-

quent feature extraction.

2.2. Feature extraction and dimensionality

reduction

Features were extracted from the following 3 time se-

ries: HR, MAP, and pulse pressure (PP) (PP = SBP −
DBP , where SBP and DBP are systolic and diastolic

ABP, respectively). From each time series, the following

features were extracted in the observation window: mean,

median, standard deviation, variance, interquartile range,

skewness, kurtosis, linear regression slope, and relative en-

ergies in different spectral bands determined by a 5-level

discrete wavelet decomposition with the Meyer wavelet. In

addition, the cross-correlations at zero lag of all 3 possible

time series pairs were computed. These features were se-

lected to quantify different aspects of hemodynamics such

as the amplitude and variability of a particular physiologic

variable. Each feature was subsequently normalized to be

zero-mean and unit-variance. A total of 45 features com-

prised the feature space.

Feature space dimensionality was reduced via principal

component analysis (PCA). In this study, PCA was con-

ducted on training data and retained the principal compo-

nents with the largest eigenvalues that captured approxi-

mately 90% of the total variance. Both training and test

data were projected onto the same feature space defined by

the selected principal components. Across different train-

ing data sets in cross-validation (to be discussed in the en-

suing section), the reduced dimensionality ranged from 15

to 16.

2.3. Classification

According to the label assigned to each example (con-

trol or hypotensive), feed-forward, 3-layer artificial neu-

ral networks (ANNs) with one hidden layer of 20 hidden

units were trained to perform binary classification. The

log-sigmoid activation function was utilized in both the

hidden and output layers. ANNs of this architecture are

powerful nonlinear classifiers that can capture any contin-

uous input-output mapping [6]. A 5-fold cross-validation

was conducted to evaluate classification performance, and

a random 20% partition of the training data was designated

as the validation data for early stopping. Separate ANNs

were trained for different gap sizes and cross-validation

folds.

In order to balance the two groups in training data so

that the classifier is prevented from favoring the major-

ity group, a subset of the majority group (which was al-

ways the control group) was randomly sampled without

replacement to match the size of the minority (hypoten-

sive) group. This randomized sub-sampling was repeated

10 times. On the other hand, test data were left unbalanced

to reflect the true prevalence of HEs. Further, the partition

between training and test data was conducted with respect

to records rather than individual examples. In other words,

examples from the same record belonged exclusively to ei-

ther training or test data.

The threshold on the posterior probability produced by

the ANN was determined from the receiver operating char-

acteristic (ROC) curve based on training data. The selec-

tion criterion for the threshold was the following:

Ts = arg max
T

{sensitivity(T ) + specificity(T )} (1)
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Table 1. Classification performance from individual gap sizes (mean±SD)

Gap (h) 1 2 3 4

AUC 0.921±0.008 0.901±0.010 0.887±0.015 0.872±0.019

Accuracy 0.873±0.008 0.842±0.014 0.835±0.017 0.810±0.019

Sensitivity 0.826±0.033 0.806±0.041 0.782±0.048 0.776±0.053

Specificity 0.875±0.009 0.844±0.015 0.837±0.018 0.811±0.021

PPV 0.159±0.014 0.129±0.013 0.121±0.014 0.105±0.012

NPV 0.994±0.001 0.994±0.001 0.993±0.001 0.992±0.002

Table 2. Classification performance from weighted prediction (mean±SD)

Weight Vector W1 W2 W3

AUC 0.934±0.007 0.930±0.008 0.930±0.007

Accuracy 0.861±0.018 0.852±0.013 0.869±0.012

Sensitivity 0.851±0.038 0.851±0.036 0.839±0.033

Specificity 0.862±0.020 0.852±0.014 0.870±0.013

PPV 0.151±0.018 0.142±0.013 0.156±0.015

NPV 0.995±0.001 0.995±0.001 0.995±0.001

where Ts is the selected threshold and T is the threshold

variable ranging from 0 to 1.

For performance evaluation, the area under ROC curve

(AUC), accuracy, sensitivity, specificity, positive predic-

tive value (PPV), and negative predictive value (NPV)

were calculated. All these measures except AUC were de-

pendent on Equation 1.

2.4. Weighted prediction

In addition to independent predictions from different

gap sizes, posterior probabilities arising from different gap

sizes for the same target window were combined in a

weighted fashion as follows:

PW = PIW (2)

where PW is the weighted posterior probability, PI =
[p1 p2 p3 p4] is a row vector containing independent poste-

rior probabilities from different gap sizes (subscript equals

gap size in hours), and W = [w1 w2 w3 w4]
T is a column

weight vector, the elements of which add up to unity. The

following 3 weight vectors were investigated:

W1 = [0.5 0.25 0.15 0.1]T

W2 = [0.25 0.25 0.25 0.25]T

W3 = [0.7 0.3 0 0]T

Above weight vectors were designed to investigate weight-

ing smaller gap sizes more (W1), equal weights (W2),

and ignoring 3 and 4 hour gaps (W3). For each weight

vector, the threshold on the weighted posterior probability

was again selected via Equation 1 based on training data.

3. Results

Tables 1 and 2 tabulate classification performance from

independent gap sizes and weighted prediction, respec-

tively. Table 1 clearly shows the general trend that overall

performance degrades as gap size increases. Also, compar-

ing Table 1 with Table 2, weighted prediction resulted in

negligible improvement over the performance associated

with 1 hour gap reported in Table 1 but outperformed pre-

dictions based on the larger gap sizes. However, the reader

should note that a fair comparison between Tables 1 and

2 can only be made with respect to 1 hour gap, since the

prediction time in the weighted scheme was 1 hour prior to

target window onset.

In Table 2, there is no meaningful difference in perfor-

mance among the three weight vectors. It is also noticeable

that W3 completely ignored predictions made at 3 and 4

hour gaps but still resulted in similar performance to W1

and W2.

In both Tables 1 and 2, sensitivity and specificity are

roughly balanced. This shows the effect of the sub-

sampling during ANN training, given that only approxi-

mately 3% of the data were hypotensive examples. How-

ever, there is a large discrepancy between PPV and NPV

in both Tables 1 and 2, highlighted by very low PPVs.

4. Discussion and conclusions

We have demonstrated promising prediction perfor-

mance with 1 hour gap. The fact that the reported re-

sults were based on such a large-scale, real-ICU data as

the MIMIC II database assigns credibility to the results.

Also, the data compilation and cross-validation in this

study simulated continuous hemodynamic monitoring (ev-
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ery 30 minutes), which is a necessity for a real-time clin-

ical decision support system (e.g., [7, 8]). Hence, similar

prediction performance is expected from a clinical trial of

the HE predictor developed in this study.

Intuitively, it is expected that prediction performance

would decrease with increasing gap size, since predicting

further into the future should be more challenging. In other

words, the diminishing performance with increasing gap

size suggests that the autocorrelations of the HR and ABP

time series decay with increasing lag.

The fact that the weighted prediction scheme failed to

meaningfully outperform the 1-hour gap predictor sug-

gests that there is no advantage in consulting previous pre-

dictions. Although this study investigated only 3 specific

weight vectors, this argument is corroborated by the obser-

vation that ignoring predictions at 3 and 4 hour gaps (W3)

did not adversely affect performance. It is concluded that

the voting mechanism based on serial predictions for the

same target window does not increase predictive certainty.

The low PPVs are attributable to the prominent imbal-

ance between the numbers of control and hypotensive ex-

amples, which reveals the true prevalence of HEs in the

ICU. However, as mentioned in the Introduction section,

this HE prediction algorithm was designed to serve as an

HE risk stratifier that would simply identify patients who

require more careful attention in the near future. In com-

parison with other clinical decision support systems that

ask for immediate clinical attention by generating an alarm

and suffer from the delay in human response associated

with a low PPV [9], this risk management approach en-

sures minimal disruption to clinical staff even with such

low PPVs.

One limitation of the binary classification approach in

this study is the hard distinction between control and hy-

potensive examples according to an arbitrary (but reason-

able) HE threshold of 60 mmHg. Classification results on

borderline cases, such as near-hypotensive control exam-

ples in which the target windows contain MAP values con-

sistently between 60 and 65 mmHg, could be debatable.

This implies that certain misclassifications could be more

tolerable than others from a clinical perspective.

A real-time implementation of the HE predictor de-

scribed in this paper would be ready for a clinical trial,

perhaps in silent mode. The clinical trial would give ICU

clinicians an opportunity to evaluate the predictor and elu-

cidate its clinical utility from their perspective.
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