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Abstract 

In this study we present a vectorcardiographic method 

to identify the culprit artery in acute coronary syndrome 

(ACS) in a study population of 860 patients with single 

vessel disease who underwent percutaneous coronary 

intervention (PCI). This method takes, in addition to the 

classical STEMI definition of J point elevation > 100 µV, 

also features of the QRS complex and the T wave into 

account.  

Comparing this method with published algorithms we 

found, in our data set, an improvement in specificity and 

sensitivity using QRS axis elevation, QRS-T angle and T 

axis azimuth in the transverse plane.  Extending this 

method to the ever increasing amount of patients with 

non-STEMI ACS who underwent PCI, we also found a 

beneficial effect of inclusion of QRS and T-wave feature 

on sensitivity and specificity. 

 

 

1. Introduction 

The ECG is a very important diagnostic tool early in 

the assessment of acute coronary syndrome (ACS). It is 

often the first tangible evidence that the patients’ 

symptoms are, indeed, caused by ACS, through an 

occlusion of any of the coronary arteries RCA (right 

coronary artery), LAD (left anterior descending artery) or 

LCX (left circumflex artery). Although the culprit artery 

(CA) can only be unequivocally determined by TCA 

(transluminal coronary angioplasty) a number of 

algorithms have been proposed (for an overview, see 1) 

that indicate which artery is involved. These algorithms 

are based on the elevations of the ST segments in the 12 

leads of the standard ECG, ST Elevation Myocardial 

Infarction (STEMI). Over the past decade, an increasing 

number of patients showing no ST elevation in any of the 

12 leads  (termed NSTEMI, Non STEMI) underwent PCI. 

In this study we aim to  develop a reliable algorithm for 

identification of the CA based on ECGs showing STEMI 

and extend that algorithm to include NSTEMI ECGs. 

2. Methods 

For this study we selected ECGs from patients with 

single vessel disease and Thrombolysis In Myocardial 

Infarction (TIMI) flow grade zero who underwent 

Percutaneous Coronary Intervention (PCI). The occluded 

segment was identified according to the 16-segment 

model used by the AHA. (1-4 and 16 = RCA, 6-10 = 

LAD, 11-15 = LCX).  All ECGs used in this study were 

taken up to 3 hours prior to the intervention and 

electronically recorded on GE MAC, Dräger Multiview, 

Philips Intellivue or Physio Control machines. For the 

purpose of this study they were subsequently stored in a 

Dräger Megacare VF 3.1 database. Since the majority of  

the ECGs was supplied in a non-Megacare format we 

devised a template file into which the raw signal data (12 

leads x 10 s x 500 samples/s) was stored and subse-

quently imported into the Megacare system.  The 

Megacare system was then used to reanalyze the newly 

imported ECG and to calculate the measurement matrix. 

Also, all ECGs used in this study were exported from the 

Megacare database and converted to an ASCII file (csv 

format, 8 independent leads I, II, V1-V6) of 5000 samples 

per lead. The ASCII file was used as import for ‘BEATS’ 

(2), a custom made Matlab program (the Mathworks, 

Natick, MA, USA) that, in short, uses the method of Kors 

et al (3) to convert the 8 ECG leads to a Vector 

Cardiogram (VCG) with X pointing horizontally to the 

left, Y pointing vertically down, and Z pointing towards 

the back of the patient, according to the AHA standard. 

Position of the onset QRS, J point and end of T wave 

were determined for each complex except for those 

deselected by the user. These values were stored along 

with a baseline corrected signal of the 8 independent 

leads. 

Another Matlab program, ‘FEATS’, was then used to 

extract 106 different features for each QRS-T complex 

from the baseline corrected ECG, amongst which: vector 

magnitude, azimuth, elevation and X, Y and Z amplitudes 

for the QRS complex, the T wave, the J point + nn ms 

(with nn ranging from 0 to 80 ms), the spatial QRS-T 
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angle and the ventricular gradient. Azimuth was defined 

as the angle of the vector with the X-axis in the XZ plane, 

elevation was defined as the angle of the vector with the 

XZ plane.  

Exclusion criteria: LBBB, RBBB, ventricular pacing, 

poor signal quality, obvious right precordial placement of 

the electrodes C3-C6, or any ECG that could not be 

completely reanalyzed by the Megacare system. Of the 

initially 1036 available ECGs 860 were included giving a 

learning set and a test set of 430 ECGs each. Of  each of 

the 16 segments equal amounts (+/- 1) were present in the 

2 sets. Since some segments were underrepresented, 

ECGs could not matched according to patient 

demographics. If needed, both sets were subdivided into 

sets containing STEMI or NSTEMI ECGs only. 

STEMI was defined as an elevation of the J-Point of at 

least 100 µV (200 µV for V1-V2) in 2 or more  of the 

consecutive leads aVL, I, -aVR, II, aVF, III or V1-V6 for 

use with the Tierala algorithm or as an elevation of the J-

Point of 100 µV or more for the vector cardiographic 

leads X and Y and an elevation of 200 µV or more for 

lead Z. 

Selection of best performing features: We considered 

best performance as maximal combined sensitivities and 

specificities for all 3 arteries, expressed as Index of Merit 

(IM), defined as % sensitivity + % specificity - 100 [4]. 

For each of the 106 features 3 histograms, 

corresponding to the 3 CA’s, were constructed from the 

test set.  

To predict the CA in an ECG the height in each of the 

3 the histograms was calculated and multiplied by values 

found for the other features under consideration. 

For optimization, a set of 9 randomly chosen features 

was used; 2 QRS-related features, 5 ST-related features 

and 2 T-wave related features and the IM was calculated. 

This procedure was repeated 1000 times and each time an 

improvement in IM was found the selected features were 

saved. The above procedure in itself was repeated 100 

times and the single feature participating most often in the 

calculation of the 10% best IM values was considered to 

be a key feature. This feature was then fixed in the next 

iteration along with one less randomly chosen feature, 

until 5 key features had been determined. 

Additionally, we used the commonly accepted fact that 

any ST elevation which is maximal in V2, V3 or V4 

points to involvement of the LAD. We slightly adapted 

the method described by Tierala [5] to determine this 

involvement: ST elevation in V2-V4 is larger than any ST 

elevation in the limb leads and/or in V5 or V6, thus 

excluding V1 from the calculations.  

In order to compare our results with published 

performances, we calculated for each ECG the CA using 

the algorithm developed by Tierala [5], since this 

algorithm performed slightly better than the algorithm of 

Fiol [6] in our data set (1). For these calculations we used 

the values for the ST elevation as given by the Megacare 

system. 

3. Results 

We analyzed 860 ECGs, 475 from Groningen, 296 

from Rotterdam and 89 from Leiden. Patient age was 66 

± 25 years, 75% male. The percentage of NSTEMI ECGs 

was 39%.  

Table 1 lists the distribution of the different segments 

and arteries over the learning and test sets. 

First, the overall performance of the Tierala algorithm 

was determined by calculation of the Index of Merit (IM), 

table 2. Running this algorithm on the learning set and the 

test set separately gave only slight differences ( < 2%). 

These values are in good agreement with our previously 

presented results based on a smaller data set [1]. 

 

 

Table 1. Distribution of segments and culprit arteries 

 

Segment number 1 2 3 4 16 RCA 

Amount in Learning set 53 68 32 6 5 164 

Amount in Test set 54 68 32 6 4 164 

              

Segment number 6 7 8 9 10 LAD 

Amount in Learning set 99 74 7 13 1 194 

Amount in Test set 98 74 8 12 1 193 

              

Segment number 11 12 13 14 15 LCX 

Amount in Learning set 27 15 24 6 0 72 

Amount in Test set 27 15 25 5 1 73 
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Table 2. Performance of the Tierala algorithm on the 

combined learning and test sets, subset of 525 STEMI 

ECGs. 

  Spec Sens IM 

RCA 91 88.5 79.5 

LAD 92.4 88.8 81.2 

LCX 96.9 32 28.9 

 

Table 3 shows the results using our algorithm on the 

STEMI ECGs. The best performing features as 

determined from the learning set were, in order of 

importance: J point azimuth, maximal ST vector elevation 

in the J point to J+80 ms range, QRS axis elevation, QRS-

T angle and T axis azimuth. The integrals of the 

histograms of these 5 features are given in figure 1. Major 

differences, compared to those of table 2 were an 

increased sensitivity for LCX and a decreased specificity 

for RCA, with an average IM of 66.3  

Table 3. Performance of our algorithm on the test set 

(subset of 265 STEMI ECGs) 

 

  Spec Sens IM 

RCA 81.5 88.9 70.4 

LAD 96.5 85.7 82.2 

LCX 96.4 50 46.4 

 

 

If the determination of the key features is restricted to 

NSTEMI ECGs only, similar features are found to be 

important, albeit giving a lower average IM: 43.5. Again 

J point azimuth and maximal ST vector elevation in the J 

point to J+80 ms range are performing best, but now with 

additionally the maximal QRS vector magnitude in the Y 

direction the QRS-T angle in the sagittal plane and the 

mean QRS vector magnitude. 

 

 
Figure 1. Integrals of the histograms for the best performing features that were derived from the STEMI learning set. 

Panel A: J Point azimuth. B: Maximal elevation in the J+0 - J+80 ms interval. C: QRS axis elevation. D: QRS-T angle in 

the transverse plane. E: T axis azimuth. LAD = blue, RCA = red,  LCX = green line 
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4. Discussion 

We have shown that including features other than the 

ST elevation, like QRS axis elevation, T axis azimuth and 

QRS-T angle can be of additional value in the 

determination of the CA. Of course, the ST segment 

information was of paramount importance; indeed, the 

first 2 key features determined in the iterative process 

were ST related. As can be seen from figure 1, the J Point 

azimuth and the maximal elevation in the J-J+80 interval 

happen to give the largest separations between the red and 

green lines representing the RCA and the LCX. Also note 

that the separation between the line representing the LAD 

and the other two arteries is less important because we 

used the VCG-independent method to determine 

involvement of the LAD: maximal elevation in V2-V4. 

Other features that seemed to give a good separation 

between the RCA and the LCX upon visual inspection 

were often closely related to the features mentioned 

above. We found, e.g. the QRS axis in the frontal plane 

having same properties as the QRS axis elevation. 

The Tierala and also the Fiol algorithms have the 

advantage of being much simpler than our vector 

cardiographic method and their method can possibly be 

applied by a trained observer without consulting a rule 

book or a computer. However, the method presented here 

has the advantage that it may yield better specificities and 

sensitivities to pinpoint the CA and that it can be applied 

to NSTEMI ECGs as well, whereas the Tierala algorithm 

is not designed for NSTEMI ECGs, as we have shown in 

a previous study [1].  It should be noted, however, that by 

reducing their criteria for ST elevation form 100 to 50 µV 

and applying these values in their algorithm will result in 

an increase of specificity and sensitivity (unpublished 

results) that approaches the method described here for the 

NSTEMI ECGs.  
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