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Abstract 

Compared to body surface potentials (BSPs) 

recordings, myocardial transmembrane potentials (TMPs) 

can provide more detailed and complicated 

electrophysiological information. Noninvasively 

reconstructing the TMPs from BSPs constitutes one form 

of the inverse problem of ECG. In this study, the inverse 

ECG problem is treated as a regression problem with 

multi-inputs (BSPs) and multi-outputs (TMPs), which will 

be solved by the support vector regression (SVR) method. 

In this paper, the Maximum Margin Clustering (MMC) 

approach is adopted to cluster the training samples 

(different time instant BSPs), and the individual SVR 

model for each cluster is then constructed. For each 

testing sample, find the cluster to which it belongs, and 

then use the corresponding SVR model to reconstruct the 

TMPs. When reconstructing the TMPs over the testing 

samples, the experiment results show that SVR method 

combined with maximum margin clustering method can 

perform better than the single SVR method in solving the 

inverse ECG problem, leading to a more accurate 

reconstruction of the TMPs. 

 

1. Introduction 

The problem of noninvasively imaging the heart�s 

electrical activity from body surface potentials (BSPs) 

constitutes one form of the inverse problem of ECG [1]. 

Approaches to solving the inverse ECG problem have 

generally relied on either an activation-based model or a 

potential-based model (such as epicardial, endocardial, or 

trans-membrane potentials). Activation-based models are 

used to investigate the arrival time of the propagation 

wavefront within the myocardium [2]. The potential-

based models are used to evaluate the potential values on 

the cardiac surface [3] or within the myocardium at 

certain time instants. In this study, we have focused on 

the potential-based inverse solutions. 

Support Vector Regression (SVR) [4] is an alternative, 

more robust approach to solve the inverse ECG problem. 

During the solution procedure, the inverse ECG problem 

will be treated as a regression problem with multi-inputs 

(BSPs) and multi-outputs (Transmembrane Potentials, 

TMPs). Compared with conventional regularization 

methods (e.g., zero order Tikhonov and LSQR), the SVR 

method can produce more accurate results in terms of 

reconstruction of the transmembrane potential 

distributions on epi- and endocardial surface. In addition, 

the SVR method with feature extraction (PCA-SVR and 

KPCA-SVR) outperforms that without the extract feature 

extraction (single SVR) in terms of the reconstruction of 

the TMPs [5].  

Xu et al [6] proposed the Maximum Margin Clustering 

(MMC) method, which can perform clustering by 

simultaneously finding the large margin separating 

hyperplane between clusters. The MMC method has been 

demonstrated that it is very successful in many clustering 

problem. Recently, Zhang et al proposed [7] an efficient 

approach for solving the MMC via alternating 

optimization, which implemented by using the SVR 

method with the Laplacian loss in the inner optimization 

subproblem. The modified MMC algorithm is more 

accurate, much faster and more practical. In this paper, 

the hybrid model of MMC method and SVR is proposed 

to solve the inverse ECG Problem, which is referred to as 

MCC-SVR method. 

The main purpose of this study is to investigate the 

reconstruction capability of TMPs from the BSPs by 

comparing between MCC-SVR model and a single SVR 

model for solving the inverse ECG problem. Based on 

our previously developed realistic heart-torso model, the 

EDL source model method is applied to generate the 

dataset for training and testing the SVR model. 

2. Theory and methodology 

The framework of the proposed MCC-SVR method is 

shown in the Fig. 1. The MCC method is used to classify 

the input data; the SVR is then applied to construct the 

regression model of each cluster. The detailed 

introduction and literature review of MCC method and 

SVR method can be seemed in the following sections. 
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Figure 1 The framework of proposed MCC-SVR method 

2.1. Maximum margin clustering method 

MMC aims at extending large margin methods to 

assign the input data points to different classes, so that the 

separation between the different classes is as wide as 

possible. Here, we consider the case when there are only 

two clusters. Since one could simply assign all the data 

points to the same class and obtain an unbounded margin, 

some sort of constraint on the class balance need to be 

imposed. Xu et al. [6] introduced a class constraint that 

requires y to satisfy: 
Te y− ≤ ≤` `                                (1) 

where 0≥` is a user-defined constant controlling the 

class imbalance. Then the margin is maximized with 

respect to both unknown y and unknown SVM parameter 

(ω , b) as follows: 
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where
1

ξ ξ ξ[ , , ]A T

n
= is the vector of slack variable for 

the errors, and 0C > is the tradeoff parameter between 

the smoothness 
2ω and the fitness (

T eξ ) of the 

decision function ( )f x . Here, ( )xϕ denotes the high-

dimensional feature space, which is non-linearly mapped 

from the input space x by the kernel function k. The 

origin nonconvex MMC problem in Eq. (2) can be 

formulated as a sequence of QPs which can be solved by 

many efficient QP solvers. However, it suffers from 

premature convergence and easily gets stuck in poor local 

optima. Zhang et al [7] proposed to replace the SVM by 

SVR with Laplacian loss, which can lead to a significant 

improvement in the clustering performance compared to 

that of iterative SVM procedure. The primal problem of 

SVR with Laplacian loss can be formulated as: 
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where iξ  and 
*

iξ are slack variables. With the labels 

being unknown, the MMC problem based on iterative 

SVR with Laplacian loss become 
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Afterω is obtained from the optimization of SVR, the 

problem in Eq.(4) reduced to the form: 
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According to Zhang�s proposition [7], for a fixed b, the 

optimal strategy to determine the
iy �s in (5) is to assign 

all
iy �s as -1 for those with ( ) 0T

ix bω ϕ + <  , and 

assign iy �s as 1 for those with ( ) 0T

ix bω ϕ + > .  

The bias b can be determined as follows: ķwe sort 

the ( )T

ixω ϕ �s and use the set of midpoints between any 

two consecutive sorted values as the candidates of b;  ĸ

From these sorted b�s, the first and the last ( ) / 2n − `  of 

them can be dropped ,and the middle `  can be remained;  

ĹFor each remaining candidate, we determine the iy �s 

according to  above proposition and compute the 

corresponding objective value in Eq. (5); ĺFinally, we 

choose the b that has the smallest objective.  

2.2. Support vector regression model 

The SVR algorithm was initially developed by Vapnik 

[8], a brief description of the algorithm is given here, for 

details, see references [4, 8]. As a linear regression 

model, the SVR algorithm relies on an estimation of a 

linear regression function: 

( ) , ,      ( , )f x x b xω ω=< > + ∈ℜ           ˄6˅ 

where ω  and b are the slope and offset of the regression 

linear, and <·, · >denotes the dot product in ℜ . The 
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above regression problem can be written as a convex 

optimization problem: 
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In Eq. (7), an implicit assumption is that a function f 

essentially approximates all pairs (xi, yi) with i precision, 

but sometimes this may not be the case. Therefore, one 

can introduce two additional positive slack 

variables *,i iξ ξ to refine the estimation of variables ω  and 

b. Now Eq. (7) can be re-formulated [8] as 
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where the constant C is a trade-off parameter and n 

denotes the number of samples; iξ represents the upper 

training error, and
*

iξ is the lower training error subject to 

i intensive tube. According to the strategy outlined by 

Vapnik [8], using Lagrange multipliers, the constrained 

optimization problem shown in Eq. (8) can be further 

restated as the following equation  
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where iα  and *

iα  are the Lagrange multipliers. The term 

K(xi, xj) in Eq. (9) is defined as the kernel function, whose 

values are the inner product of two vectors xi and xj in the 

feature space l(xi) and l(xj). And bias b can be computed 

as follows: 
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The kernel function has to satisfy Mercer�s condition, and 

is intended to handle any dimension feature space without 

the need to explicitly calculate l(x). In this study, the 

Gaussian kernel function is chosen as the SVR�s 

application mapping in this study.  
2

2
( , ) exp( )

2

i j

i j

x x
K x x σ

−= −                              (11) 

where xi and xj are input vector space; 
2σ is the 

bandwidth of the kernel function. 

In this study, an accurate and fast approach based on 

the GA and the simplex search techniques is presented to 

determine the optimal hyper-parameters of the SVR 

model. The implementation of the GA algorithm is 

realized with a GA toolbox developed by Chipperfield et 

al., and the simplex optimization method can be easily 

found from the Matlab optimization toolbox. The 

software LIBSVM was used to train and validate the 

developed SVR model. 

2.3. Simulation protocol and data set 

The SVR model is tested with our previously 

developed realistic heart-torso model [3, 5]. In this 

investigation, a normal ventricular excitation is illustrated 

as an example to calculate the data set for the SVR model. 

The considered ventricular excitation period from first 

breakthrough to the end is 357 ms and the time step is 

1ms, and thus, 358 BSPs lB and TMPs lm temporal data 

sets are calculated; In addition, the BSPs lB are added 

with 30dB simulated Gaussian white noise  to mimic the 

clinical measurement noises. 60 data sets at times of 3ms, 

9ms, 15ms,�, 357ms after the first ventricular 

breakthrough are used as testing samples to evaluate the 

generalization capacity of the proposed SVR model. The 

rest 298 in 358 data sets are employed as the training 

samples for building the SVR model. 

3. Results 

According to MCC method, the 298traing samples are 

classified 4 clusters as shown in the Figure2(a), the 

number of the four clusters is 80, 74, 70, and 74 

respectively. Then we can train the individual SVR model 

for each cluster, and the hyper-parameters are determined 

using the GA-Simplex method. For each testing sample in 

testing data, find the cluster to which it belongs to as 

shown in the Figure 2(b). 

 In this study, one sequential testing time points (27ms 

respectively after ventricle excitation) are presented to 

illustrate the performances of the reconstructed TMPs. 

The inverse ECG solutions are shown in Figure 3, it can 

be seen that the MCC-SVR method offers superior 

performances than the single SVR method, whose 

solution are more close to the simulated TMPs 

distributions. The time courses of the simulated TMPs 

and reconstructions for one representative source point on 

the heart surface are depicted in Figure 4.  

 
(a)                                   (b) 

Figure 2 on one epicardial point, (a) the 298 training 

samples are classified into four clusters by using MCC 

method; (b) for the 60 testing samples, find the cluster 

which it belongs to. 
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Figure 3 The TMPs distribution on the ventricular surface 

at 27 ms after the first ventricular breakthrough. The 

upper row shows the TMPs distribution from an anterior 

view and the lower from a posterior view. (a) the 

simulated TMPs; (b) the reconstruction with SVR method; 

(c) the reconstruction with the MCC-SVR method. 

 
Figure 4 The time courses of the TMPs for one 

representative source point on the heart surface. The 

reconstruction TMPs over the 60 testing times with SVR 

method, and MCC-SVR method are all compared with 

those simulated TMPs. 

4. Discussion and conclusion 

The SVR method is a powerful technique to solve the 

nonlinear regression problem, and can server as a 

promising tool for performing the inverse reconstruction 

of the TMPs. Maximum margin clustering (MMC) is a 

recent large margin unsupervised learning approach that 

has often outperformed conventional clustering methods, 

which can be implemented by the iterative SVR method. 

In this paper, the MMC approach is adopted to cluster the 

training samples (different time instant BSPs), and the 

individual SVR model for each cluster is then constructed. 

For each testing sample, find the cluster to which it 

belongs, and then use the corresponding SVR model to 

reconstruct the TMPs. The reconstructed TMPs obtained 

by using the MCC-SVR and single SVR method are 

given in figures 3 and 4. When reconstructing the TMPs 

over the 60 testing samples, the results from the MCC-

SVR method are superior to those from the single SVR 

method, which are close to the simulated TMPs.  

In this paper, the MCC-SVR method is proposed for 

the inverse solutions of the ECG problem. The new 

algorithm was tested and compared with single SVR 

schemes using a realistic heart-torso model. The 

experimental results show that the MCC-SVR can 

improve the generalization performance of the single 

SVR in reconstructing the TMPs, leading to a more 

accurate reconstruction of the TMPs. According to these 

results, the MCC-SVR method can server as a promising 

tool for solving the nonlinear regression problem of the 

inverse ECG problem. 
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