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Abstract

A reliable diagnosis by automated external defibrillators

(AED) during cardiopulmonary resuscitation (CPR) would

reduce hands-off time, thus increasing the resuscitation

success. Several filters based on one (dual-channel)

or multiple (multi-channel) reference signals have been

proposed to remove the artifact induced on the ECG by

chest compressions. However these filters were optimized

and their performance evaluated using different ECG data

and AED algorithms.

In this study, we have re-optimized and evaluated the

performance of two dual-channel filters using the same

ECG data and AED algorithm used to develop and test

a well known multi-channel filter. The accuracy of the

tested multi-channel and dual-channel filters was similar.

Dual-channel filters need fewer reference channels and

a lower computational burden and can be more easily

incorporated to current AED.

1. Introduction

The mechanical activity from the chest compressions

during cardiopulmonary resuscitation (CPR) introduces

artifacts in the ECG. These artifacts modify the waveform

of the ECG and rhythm analysis of automated external

defibrillators (AED) becomes unreliable. Therefore, CPR

must be stopped for a reliable diagnosis by the AED.

These hands-off intervals adversely affect the probability

of success of the defibrillation shock [1]. Filtering the

CPR artifact would allow a reliable diagnosis during

CPR, thus reducing the hands-off interval and increasing

resuscitation success.

It is not possible to filter the CPR artifact from

the human ECG using fixed coefficient filters because

they present a large spectral overlap. In the last

decade, several adaptive filters have been proposed to

suppress the CPR artifact, either by analyzing the ECG

rhythm alone or by using additional reference signals

correlated with the artifact. The latter provide better

results. Filters based on one (dual-channel) [2, 3]

or more than one (multi-channel) [4] reference signals

have been proposed to suppress the CPR artifact from

out-of-hospital cardiac arrest episodes (OHCA). Both

filtering schemes reported similar results in terms of the

proportion of correctly detected shockable (sensitivity)

and nonshockable (specificity) rhythms after filtering.

However, the comparison between them have two sources

of bias, filters were developed and tested using different

OHCA data and different shock advice algorithms (SAA).

The aim of this study is to present an unbiased

comparison between multi-channel and dual-channel

filters. Both filtering schemes will be optimized and

evaluated using the same database of OHCA records and

the same SAA.

2. Methods

2.1. ECG database

The database used in this study was originally conceived

to evaluate the MC-RAMP multi-channel filter [4]. The

dataset is a subset of a large database acquired in

a prospective study of OHCA patients [5], annotated

by expert reviewers in five rhythm types: ventricular

fibrilation (VF) and fast1 ventricular tachycardia (VT)

in the shockable category and asystole (ASY), pulseless

electrical activity (PEA) and pulse generating rhythm (PR)

in the nonshockable category. The surface ECG and

several additional reference channels were acquired using

a modified version of Laerdal Medical Heartstart 4000

defibrillator with a sampling rate of 500 Hz and 16 bit

resolution. The ECG had a resolution of 1.031 µV and the

acquisition bandwidth was 0.9–50 Hz.

The database is composed of 184 shockable (178 VF

and 6 VT) and 388 nonshockable (104 ASY, 228 PEA and

16 PR) registers. Each register is 20 s long with the initial

1Heart rate above 150 beat per minute (bpm)
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10 s corrupted by CPR followed by 10 s of clean ECG, and

contains all channels resampled at 200 Hz. The database

was randomly distributed into a training set to determine

the optimal working point of the filters and a test set to

evaluate their performance. Each set has 89 VF, 3 VT, 52

ASY, 114 PEA and 8 PR episodes.

2.2. CPR suppression methods

We have compared the efficacy of the MC-RAMP

multi-channel filter [4] to that of two dual-channel filters:

the LMS filter [2] and the Kalman filter [3].

2.2.1. MC-RAMP filter

The MC-RAMP filter, which was originally optimized

and evaluated for the data used in this study [4], uses

four reference signals to model the artifact: ECG common

mode voltage, transthoracic impedance, compression

acceleration and compression depth (CD). The filter

determines what reference channels to use depending on

their energy and their cross-correlation to the corrupted

ECG. Optimal results were obtained for 5 filter coefficients

per reference channel and a coefficient update window

length of 400 samples.

2.2.2. LMS and Kalman filters based on the

chest compression rate

The LMS and Kalman filters are based on a model

of the CPR artifact described in detail in [2]. The

artifact is almost periodic during chest compressions and

can be modeled through a Fourier series representation

using N harmonics of time-varying Fourier coefficients

ak(n) and bk(n). During pauses in chest compressions,

defined as intervals longer than 1 s between consecutive

compressions, the artifact is made zero. The compression

and pause intervals are combined in a single model using

an amplitude envelope A(n) which is 1 during chest

compressions and 0 during pauses. The complete model

of the artifact is given by the following equation:

ŝcpr(n) = A(n) ·

N∑

k=1

ak(n) cos(kφ(n))+

bk(n) sin(kφ(n)) (1)

where φ(n) is the instantaneous phase of the compressions

derived from the instantaneous frequency. This

frequency, the inverse of the interval between consecutive

compressions, is updated every new compression. The

instants of the compression were automatically marked

on the CD reference channel using a peak detector for

compression depths greater than 1.5 cm.

The LMS and Kalman filters are two efficient methods

to estimate the values of ak(n) and bk(n). The LMS filter

is described in detail in [2] and the Kalman filter in [3]. An

optimal compromise between an accurate representation of

the CPR artifact and the computational burden is obtained

for N = 5 harmonics [2]. Then each filter depends on a

single parameter: µ0 the LMS step-size of the fundamental

component in the LMS filter, and q0 the variance of the

noise process of the fundamental component in the Kalman

filter. The step size (µk) or the variance (qk) for k-th

harmonic are adjusted in the following way:

µk =
1

k
µ0 and qk =

1

k
q0 (2)

2.3. Shock advice algorithm

The performance of the filters was optimized and

evaluated in terms of the sensitivity and specificity of an

offline PC version of the SAA used in the Laerdal Medical

Heartstart 4000 defibrillator. The algorithm analyses two

or three 3 s segments of the ECG for a shock/no-shock

decision, and diagnoses shock for VF and for VT with rates

above 150 bpm. The ECG is fed to the algorithm at 200 Hz

with 16 bit resolution.

3. Results

3.1. Optimization of the dual-channel filters

The LMS and Kalman filters have been reoptimized

using the training dataset and the SAA of the Heartstart

4000 as done by Eilevstjønn et al. for the MC-RAMP filter.

The only adjustable parameter of the LMS filter is

µ0. Fig. 1(a) shows the sensitivity and specificity after

filtering of the LMS filter for the different values of µ0.

As shown in Fig. 1(a), the specificity is always below

95 %, the minimum value recommended by the American

Heart Association (AHA) for nonshockable rhythms[6].

However, for µ0 above 2.8 · 10−3 the specificity is over

80%, close to the values reported for the MC-RAMP filter.

So we defined the following working range of the LMS

filter:

2.8 · 10−3 < µ0 < 80 · 10−3 (3)

where the sensitivity was above 90 %, the minimum value

recommended by the AHA for VF, and the specificity was

above 80 %. The optimum working point was defined

as the value of µ0 that yielded the maximum accuracy

(proportion of correctly identified registers) in the working

range of the filter:

µ0 = 7.1 · 10−3 (4)

achieving a sensitivity and specificity of 97.8% and 86.8%.
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(b) Optimization of Kalman filter

Figure 1. Sensitivity (Se) and specificity (Sp) after

filtering for the corrupt interval of the training dataset.

The only adjustable parameter of the Kalman filter is q0.

Fig. 1(b) shows the sensitivity and specificity after filtering

of the Kalman filter for the different values of q0. For q0
above 8 · 10−6 the specificity was over 80 %. We defined

the following working range of the Kalman filter:

8 · 10−6 < q0 < 1.3 · 10−3 (5)

adopting the same criteria described for the LMS filter.

The best working point for the training dataset was:

q0 = 4.7 · 10−5 (6)

for a sensitivity and specificity of 97.8 % and 85.6 %.

3.2. Evaluation of the performance

The performance of the filters was evaluated using the

test dataset. We calculated the sensitivity and specificity

for the clean interval and for the corrupted interval both

before and after filtering. The results are summarized in

Table 1 for the three filtering methods. All filters were

used in their optimal working point.

The sensitivity and specificity before filtering were

81.5% and 67.2% for the corrupt interval and 97.8% and

98.9% for the clean interval. After filtering, the sensitivity

and specificity of the corrupt interval increased to 94.6%

and 81.6% respectively for both the LMS and the Kalman

Table 1. Sensitivity and specificity for the test database

before and after filtering.

During CPR Without CPR

Se(%) Sp(%) Se(%) Sp(%)

Without filter 81.5 67.2 97.8 98.9

MC-RAMP filter 96.7 79.9 97.8 98.3

LMS filter 94.6 81.6 97.8 98.9

Kalman filter 94.6 81.6 97.8 98.9

filters, for an accuracy of 86.1%. The sensitivity and

specificity after filtering reported for the optimal working

point of the MC-RAMP filter were 96.7% and 79.9%, for

an accuracy of 85.7%. The sensitivity of the MC-RAMP

filter is two points better than for LMS and Kalman filter,

however, the specificity is two points lower. The overall

accuracy is around 86% for all filtering methods.

Fig. 2 shows a filtering example of a register with

an underlying VF rhythm. The ECG signal in the

corrupt interval is misclassified as a nonshockable rhythm.

Filtering reveals the underlying VF and the ECG signal is

correctly identified as shockable. All three filters reveal the

underlying VF rhythm despite the small differences in the

ECG waveform obtained by the different filters.

4. Discussion and conclusions

The sensitivity and specificity values obtained after

filtering the corrupted ECG with multi-channel and

dual-channel methods are very similar. In fact, the

accuracy of all three filters is almost the same, so

their performance is similar in terms of the diagnosis

of the SAA. However, the MC-RAMP filter is more

complex because it requires the acquisition of four

additional reference channels and is computationally more

demanding. The LMS and the Kalman filters are based on

a simple model of the CPR artifact which only requires the

acquisition of the instantaneous chest compression rate,

and could therefore be easily incorporated in current AED.

Our results suggest that the simple model of the CPR

artifact expressed by Equation (1) is as accurate as models

based on the information obtained from multiple reference

channels. The artifact can be efficiently estimated using

only the instantaneous chest compression rate and its

harmonic components.

Filtering improved both the sensitivity and the

specificity during CPR by around 13 points. The

sensitivity after filtering was above the value recommended

by the AHA for VF. However, the specificity after filtering

is around 80 %, well below the 95 % recommended

by the AHA. Using these filters directly may be

detrimental for survival because it could either increase

the amount of unnecessary shocks or CPR could be
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Figure 2. Filtering example of a corrupted VF. The corrupted ECG interval is misclassified as nonshockable before

filtering. After filtering the underlying VF is revealed and the rhythm is correctly classified as shockable.

stopped unnecessarily for rhythm analysis in patients

with nonshockable rhythms. Further efforts should be

focused on improving the specificity, a possible approach

is to combine the design of SAA and CPR suppression

methods.
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