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Abstract 

This study evaluates the usefulness of a new heart rate 

variability (HRV) complexity measure, the Point 

Correlation Dimension (PD2i), derived from short term 

ECG recordings, as a screening tool for Cardiac 

autonomic neuropathy (CAN). The PD2i was developed 

to measure complexity in nonstationary data with some 

tolerance for background noise. ECG recordings during 

supine rest were acquired from diabetic subjects with 

CAN (CAN+) [10 subjects] and without CAN (CAN-) [33 

subjects] and analyzed. PD2i indices (mean, standard 

deviation, minimum and maximum) were used for 

analyzing HRV signals of all subjects.  Significantly 

reduced (p < 0.01) PD2i indexes were found in CAN+ 

group, which could be a practical diagnostic and 

prognostic marker. 

 

1. Introduction 

The prevalence of diabetes mellitus (DM) is currently 

estimated at 200 million people worldwide exceeding 360 

million patients in 2030 [1]. For these patients, the 

incidence of cardiac autonomic neuropathy (CAN) 

increases with time and reaches 65% after 10 years. 

Cardiovascular autonomic neuropathy (CAN) may be the 

most clinically important form of diabetic autonomic 

neuropathy [2] because of its link to arrhythmic death.  

CAN has been frequently postulated to increase 

susceptibility to ventricular arrhythmias and sudden 

cardiac death in diabetic patients.  This neuropathy has a 

negative impact on the survival and quality of life as it is 

associated with fatal and nonfatal cardiovascular events, 

ischemic cerebrovascular events and overall mortality [3]. 

Early detection of subclinical autonomic dysfunction in 

diabetic patients is, therefore, of vital importance for risk 

stratification and management for the prevention of 

serious adverse events [4]. 

 

1.1. Existing methods to detect CAN  

Currently, the diagnosis of CAN relies on non-invasive 

Ewing test battery [5] that was specifically designed for 

the diagnostic of the CAN, and for assessing its 

development stage. The procedure consists of five tests 

i.e. the heart-rate responses induced by controlled 

breathing, the Valsalva maneuver, standing up, and the 

changes in blood pressure induced by standing and 

handgrip. Recent research studies focus on the 

noninvasive techniques for the detection and progression 

of the severity of CAN from heart rate variability analysis 

techniques using surface ECGs. 

 

1.2. Detection of CAN from nonlinear 

HRV analysis methods 

A study on young DM patients by Javorka and 

associates [6] indicated that new measures of heart rate 

variability (HRV) that assess its complexity, as opposed 

to its statistical parameters and power spectra, provide 

additional diagnostic information regarding early 

subclinical autonomic dysfunction. Nonstationarity and 

noise are problems for nonlinear algorithms, as any noise 

in the data becomes amplified and a nonstationarity in the 

data obscures the algorithmic result [7]. The Point 

Correlation Dimension (PD2i) [3] was developed to 

measure complexity in short term nonstationary data with 

some tolerance for background noise. In this study, we 

investigate whether PD2i indices (Minimum, Maximum, 

Mean and Standard deviation) of HRV are able to detect 

the presence of CAN in Diabetic patients as diagnosed by 

the Ewing maneuvers. 

 

2. Methods 

A total of 43 sets of 20 minute ECG recordings during 

supine rest were acquired from diabetic subjects with 

CAN (CAN+) [10 subjects] and without CAN (CAN-) 
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[33 subjects] and analyzed. Participants in the study were 

identified as CAN+ by the use of the lying to standing 

tests for heart rate and blood pressure changes, as was 

done and suggested by Ewing to be useful as an indicator 

of autonomic dysfunction in clinical testing. All patients 

in this study were individuals enrolled in the Diabetes 

Complications Research Initiative (DiScRi) at Charles 

Sturt University. The Vicor PD2i Analyzer (Vicor 

Technologies, Inc., Boca Raton, FL, USA) was used to 

calculate all PD2i values from the data-set of R–R 

interval provided to Vicor in a coded blinded manner. 

PD2i indices (mean, standard deviation, minimum and 

maximum) were used for analyzing HRV signals of all 

subjects. 

 

 

2.1. Calculation of PD2i index 

    This nonlinear algorithm begins with pair wise 

sampling of i and j groups of heartbeats in the heart rate 

data series.  The next step is comparison of the two 

samples, after each sample is first converted into an m-

dimensional vector.  The comparison is the vector 

difference length (VDL), scaled for all VDLij.  The “i” 

and “j” represent values that are incremented throughout 

the data series and the VDLs  are repetitively calculated 

until the end of the data stream is reached for both i and j. 

Values where i = j are omitted, as they will always be 

equal to zero; the end of the data stream is not Ni 

(number of data points), but Ni minus the number of data 

points needed to make the last of the m-dimensional 

vectors (m is called the “embedding dimension”).  Once 

all of the VDLij values are made for each embedding 

dimension and collected together for each fixed value of i 

compared to all values of j, they are rank ordered by their 

absolute values.  The mathematical model is C = RPD2i. 

where C is the count of VDL’s for each range or step-

size, R.  The “i” in “PD2i” is added to emphasize that 

PD2i is time-dependent and calculated for each fixed 

value of “i” in the data series, and the “D2” means that 

the mean PD2i approaches the correlation dimension (D2) 

as Ni goes to infinity.    

       PD2i is then calculated as the slope of the log-log 

plot of C vs. R, as shown in Figure 1.  For large data 

length (i.e., as Ni approaches infinity) there will be a first 

long linear slope (1) followed by shorter ones that 

eventually disappears as Ni gets very large.  For Ni = 

10PD2i there will be more than the first scaling region 

because of the finite data length, but this minimum-Ni is 

sufficient to capture all dimensions or degrees of freedom 

in the time-series.  This minimum Ni should be adopted. 

not only for adequate sampling, but also to achieve clear 

convergence of slope vs. m (i.e., by the 9th embedding 

dimension for physiological data).    

       With finite data length, but following the rule that Ni 

> 10PD2i, a “floppy tail” appears initially in the logC vs. 

logR plot (FT, Figure 1E).  The FT is unstable as m is 

increased, and is caused by the finite digitization rate for 

the data.  The use of a “linearity” criterion in conjunction 

with the restrictive “plot length” parameter (that makes 

the PD2i unique) results in the observed slope lying just 

above the FT and within the first slope (1) region.          

      The running mean PD2i stays within 4% of its 

known value (D2) when used to analyze non-stationary 

data made from linking sub-epochs with known degrees 

of freedom [8].  The D2i algorithm, the only other time-

dependent algorithm that measures degrees of freedom, 

shows spurious values with this data mainly because its 

slope is determined over the whole plot of logC/logR.  

The slope length of PD2i is restricted to lie between the 

FT and up to 15% of the total plot length, so that when 

the reference point i moves into a new sub-epoch, the 

slope changes accordingly, as new small logR values are 

obtained. 

 
Figure 1.  Calculation of the PD2i (degrees of 

freedom).  A.  The successive R-R intervals are sampled; 

the i-samples stay the same (fixed in time) while the j-

samples travel through the entire data series.  B.  The 

sampled heartbeats are plotted in orthogonal axes and the 

resultant is determined (here 3 heartbeats are sampled and 

plotted in 3 dimensions); the two resultants are compared 

by taking their vector difference length (VDLij).  C.  The 

mathematical model is C scales as R raised to the PD2i 

power, where C is the count of VDL’s for each range or 

step-size, R; this model is the same as PD2i = logC/logR, 

a slope value.  D.  Counts and Range size are plotted after 

rank ordering the absolute values of all VDLij’s for a 

fixed (in time) value of i (and m).  E. logC vs. logR plot 

where the slope increases as m is incremented (m is the 

embedding dimension or number of heartbeat coordinates 

526



used to make the i- and j vectors).  F.  PD2i is defined as 

the convergent slope (horizontal bar and arrow), where 

convergence means that an increment in m no longer 

causes an increase in the slope; Ni, the total number of 

heartbeats, must be larger than 10PD2i to enable adequate 

sampling and clear convergence; here PD2i is 

approximately 3, so 1000 heartbeats are required. 

 

2.2. Results 

Significantly reduced (p < 0.01) PD2i indexes were 

found in CAN+ group shown in Table 1, which could be 

a practical diagnostic and prognostic marker. The relative 

importance of PD2i features was determined by receiver-

operating curve (ROC) analysis for CAN+/- 

discrimination [9]. The areas under the ROC curves were 

found to be 0.72, 0.79, 0.80 and 0.70 for minimum, 

maximum, mean and standard deviation of PD2i 

respectively as shown in Figure 2.  

Table 1: Values of different PD2i indices classifying 

CAN- and CAN+ groups   

Features CAN- 

group(33) 

CAN+ 

group(10) 

Area under 

ROC curve  

Maximum(PD2i) 3.58 ± 0.96 2.58 ± 0.76 0.79 

Minimum(PD2i) 2.41 ± 0.88 1.65 ± 0.50 0.72 

Mean(PD2i) 3.88 ± 0.96 2.83 ± 0.70 0.80 

Std(PD2i) 0.82 ± 0.22 0.71 ± 0.26 0.70 

All values are given as Mean ± Standard deviation 
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Mean(PD2i),ROC curve area=0.80

Max(PD2i),ROC curve area=0.79

Min(PD2i),ROC curve area=0.72

Std(PD2i),ROC curve area=0.70

 

Figure 2. Area under the ROC curves for different PD2i 

features. The Mean (PD2i) index has the largest ROC 

area showing the best discriminatory power in classifying 

CAN- from CAN+ group. 

 

3. Discussions 

The non-invasive Ewing test battery [5] was 

specifically designed for identifying CAN, which consists 

of five tests. The Ewing battery however requires patient 

cooperation and for the disease to be present [10]. It is 

also less sensitive to changes associated with cardiac 

autonomic neuropathy compared to spectral methods 

[11]. More importantly it is often not able to be 

performed due to co-morbidities in the patients like 

existing heart or respiratory disease, which is a counter 

indication for the Valsalva manoeuvre. Use of 

antihypertensive medication influences the outcome of 

the lying to standing test that measures blood pressure 

changes on standing and identifies orthostatic 

hypotension. The hand grip test is hindered by lack of 

strength in the elderly and more often by arthritis in the 

hands. The lying to standing heart rate (HR) test is the 

easiest test to perform, although it may be difficult for 

some with a lack of mobility as is often found in the 

elderly [12].  

The most common methods that are non-invasive and 

independent of patient cooperation used are heart rate 

variability analysis techniques. A change in HRV is 

regarded as one of the early signs of CAN [10]. The 

conventionally used time and frequency domain 

parameters of HRV are not always suitable for analysis 

because of the non-stationary characteristic of the ECG 

recordings, the influence of respiration and the presence 

of nonlinear phenomena in the physiological signal’s 

parameter variability [12].  

The nonlinear algorithm, the Point Correlation 

Dimension (PD2i), is preferred as it is not only accurately 

provides the degrees of freedom in the heartbeats, but it is 

also insensitive to data nonstationarity and small amounts 

of noise that invariably get into the data [8]. As a 

complexity measure it determines the degrees of freedom, 

or a number of independent variables operating at each 

point in time to produce the data and will track those 

changes with only a small (4%) error [8]. For this unique 

feature in comparison to other complexity and entropy 

algorithms developed to work on shorter data lengths, the 

minimum PD2i value was far more predictive of future 

lethal arrhythmogenesis in high-risk cardiac patients [14] 

In addition, in contrast to the other nonlinear methods that 

require long, relatively noise-free ECG data, the PD2i 

algorithm has been found to perform effectively on even 

relatively short, noisy data [16].  

In this study, reduction of PD2i values in CAN+ 

groups could indicate that PD2i may be sensitive to 

cardiac risk in DM patients. In the previous studies, the 

PD2i was reduced in DM patients without signs of 

cardiac effects and in cardiac patients without signs of 

DM [15]. The reduced PD2i has been interpreted as the 

result of cooperation (phase coherency) among the 

various independent regulators of the heartbeats that lie in 

the brain [14]. 

 

 

 

527



4. Conclusions 

    The reduced PD2i index values show the presence of 

CAN. This study needs to be further extended to make 

sure whether CAN+ at the early stages could be detected 

by PD2i features which may not be possibly detected by 

Ewing tests.  
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