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Abstract

In this study, we examine whether it is reliable to use

all successive shocks from one patient for the development

of an outcome predictor model to discriminate “Success”

versus “No success”. Vector of predictors −→v are extracted

from time and non-linear dynamics domains and a Gaus-

sian Mixture Model-based bayesian classifier, with prob-

ability density estimated by the Expectation-Maximization

algorithm, is applied in order to detect shocks with “Suc-

cess” according to the probability P (−→v /Success). A

cross-validation analysis is performed independently on

136 first shocks (Group1) and 382 second and later shocks

(Group2). At 5 s post-shock, an Organized Rhythm (OR) is

considered as “Success” and Ventricular Fibrillation (VF)

is defined as “No success”. A decrease in performance

of discrimination of OR versus VF between Group1 and

Group2 is observed with an Area Under the ROC Curve of

0.82 and 0.65, respectively. This corroborates the current

hypothesis that within-patient correlation affects defibril-

lation outcome prediction accuracy.

1. Introduction

Ventricular Fibrillation (VF) remains a most common

arrhythmia in many instances of sudden cardiac death.

Over the last few decades, techniques have been devel-

oped to analyze the surface electrocardiogram (ECG) as-

sociated with VF, in an attempt to obtain more information

about the state of the myocardium and predict defibrilla-

tion outcome. There is no doubt that the duration of VF re-

mains one of the principal determinants for the likelihood

of successful defibrillation. For patient with witnessed car-

diac arrest, rapid defibrillation is strongly recommended.

When the duration of untreated VF exceeds 4 or 5 min.,

performing Cardiopulmonary Resuscitation (CPR) for 90

s or 3 min. is recommended before any defibrillation at-

tempt [1, 2]. However, the exact duration of sudden onset

VF is not always clear for rescuer, and therefore, there is

a need for regarding the priority of intervention to be per-

formed, namely immediate defibrillation or reperfusion by

prior chest compressions. Thus far, several non-invasive

predictors of successful defibrillation in VF waveform of

ECG have been reported. These predictors can be gener-

ally categorized into time domain [3–9], frequency domain

[10, 11] and non-linear dynamics domain [12–16] and are

used alone or combined [17, 18]. Moreover most of the

predictor models have been developed on large databases

including all shocks of each patient. Nevertheless Gunder-

sen et al. mentioned that within-patient correlation affects

defibrillation outcome prediction accuracy [9, 19]. To our

knowledge, since repeated shocks in one patient were con-

sidered as dependant events, only Lin et al. [15] have de-

cided to collect for analysis just the initial ECG waveform

before each first time defibrillation.

The objective of this study is to evaluate the influence

of all successive shocks from one patient on defibrillation

outcome prediction, when used for the development of an

Expectation-Maximization Gaussian Mixture Model (EM-

GMM)-based bayesian classification model to discrimi-

nate “Success” versus “No Success” at 5 s post-shock.

2. Material

2.1. Data collection

This study was applied to a collection of ECG record-

ings from 136 first shocks (Group1) and from 382 sec-

ond and later shocks (Group2). All victims underwent an

Out-of-Hospital Cardiac Arrest (OHCA) intervention with

Automated External Defibrillators (AEDs) (Fred and Fred

Easy, Schiller Medical SAS, France) used for first-aid by
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fire fighters in the region of Nancy, France, between July

2006 and September 2009. These observational data were

collected retrospectively without any patient identifiable

information.

The Nancy Emergency Medical Service (EMC) is a two-

tiered system serving urban, suburban and rural portions

(714,000 inhabitants). AEDs were used by the first-tier,

which consisted of fire brigades all trained in basic life

support and defibrillation.

The FRED R©Schiller Medical AEDs have a pulsed

biphasic defibrillation waveform embedded and followed

the ERC 2005 guidelines, with a fixed 150 J energy pro-

tocol. For each patient, the defibrillation pads of the AED

were applied to the chest (lead II) and were also used for

continuous recording in the AED memory.

2.2. Data annotation

For each patient, the first shock delivered on a VF

rhythm was included in the Group1 and the second and

later shocks were included in the Group2. The 5 s post-

shock rhythms were annotated by two biomedical engi-

neers and a cardiologist-electrophysiologist and are sum-

marized in Table 1. The definition of the 5 s post-shock

rhythms is:

• Organized Rhythm (OR): Presence of one or more com-

plexes,

• Ventricular Fibrillation (VF): Coarse VF with Peak-to-

Peak (PtP) amplitude ≥ 200 µV,

• Asystole (ASYS): PtP amplitude < 100 µV during more

than 4 s or VF with PtP amplitude < 200 µV

A defibrillation was regarded as successful when VF

was converted into an OR 5 s after the defibrillation. A

conversion into VF was considered unsuccessful. Two

classes were defined: ω1 the “Success” class and ω2 the

“No success” class. Further will be discussed the reason

why we consider to study ω1=OR versus ω2=VF, without

considering the ASYS rhythms.

Table 1. 5 s post-shock rhythms included in Group1 and

Group2 and the classification ω1 versus ω2 with ω1 the

“Success” class and ω2 the “No success” class.

Group1 Group2 Classification

OR 32 131 ω1

VF 22 108 ω2

ASYS 82 143

3. Methods

3.1. ECG pre-processing and analysis

The sampling rate of the ECG recorded by the AED

was 250 Hz. To obtain measurements that were free of

artefacts, each 4.1 s (1,025 samples) ECG epoch immedi-

ately before the shock was analyzed. This analysis was

conducted off-line using MatlabTM(The Mathworks, Inc.,

Natick, MA, USA). Pre-processing of the ECG record-

ing consisted of a Butterworth first order band-pass 0.5-30

Hz filtering. We evaluated 4 VF morphological features

(see Table 2): Mean Slope (MS) from time domain and

Detrended Fluctuation Analysis (DFA) parameters from

non-linear dynamics. DFA is related to fractal dimension,

which is an index for describing the irregularity of signal

by measuring patterns of self-similarity. Moreover DFA

can be applied on non stationary data sets. DFA plot is not

strictly linear but consists of 2 distinct regions of differ-

ent slopes (DFASlope1 and DFASlope2). The breakpoint

with coordinates (DFAFreq, DFAAmp) gives the frontier

between the 2 zones.

Table 2. The 4 morphological features: 1 from time do-

main, 3 from non-linear dynamics.

Domain Features

Time Mean Slope (MS) [7–9]

DFA Slope 2 (DFASlope2) [15, 16]

Non-linear dynamics DFA Frequency (DFAFreq)

DFA Amplitude (DFAAmp)

3.2. Classification method

To approach the problem of classification we propose

to first learn a set of class-conditional probability density

functions, expressed as P (−→v /ω), where −→v is the vector of

predictors and ω is a class. An appropriate representation

of a class-conditional probability is a Gaussian Mixture

Model (GMM) [20]. A GMM is a density function that

can be defined as a weighted sum of multivariate gaussian

density functions f(−→v /−→µ k,Σk) with mean −→µ k, covari-

ance matrix Σk and αk the weight of the kth component

of the mixture (Equation 1).

P (−→v /ω) =

K∑

k=1

αkf(−→v /−→µ k,Σk) (1)

Expectation-Maximization (EM) algorithm combined to

GMM is a reliable and scientifically well documented den-

sity estimation algorithm [20] (see Figure 1). EM is used
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for fitting the GMM to a set of training data. In compari-

son with the standard histogram technique or its alternative

the Kernel Density Estimation (KDE) used in other studies

[21], EM solved the problem of bins width and smoothing

parameter choice. As EM requires prior knowledge of the

model order, the optimal K for each class was obtained so

as to maximize the likelihood of the data given the model.

Once we have learned P (−→v /ωi) with i=1,2 from the train-

ing data, we can use the Bayes decision rule (Equation 2)

to classify observations from validation database.

P (ωi/−→v ) =
P (−→v /ωi)P (ωi)

P (−→v )
(2)

P (−→v ) is the prior probability. So the decision rule mini-

mizes the probability of misclassification by deciding that
−→v predicts a success if P (ω1/−→v ) > P (ω2/−→v ).

Figure 1. EM-GMM based estimate of the

class conditional probability P (−→v /ω2) with
−→v = (MS,DFAAmp).

3.3. Statistical analysis

A cross-validation, more precisely a N-times hold-out

method, was run. At each iteration the data were split into

two databases: 2/3 for training and 1/3 for testing. Re-

ceiver Operator Characteristics (ROC) curves, which rep-

resent classifier performance, Sensitivity (Se) and Speci-

ficity (Sp) across the range of possible thresholds of like-

lihood ratio, were constructed. The Area Under the ROC

Curve (AUC) represents condensed information regarding

discriminating power, usually taking a classifier to be good

if AUC > 0.8 and poor if AUC < 0.7. AUC and associated

95% Confidence Intervals (CIs) were calculated.

4. Results

The predictor vector used to analyze both Group1 and

Group2 was −→v =(MS, DFASlope2, DFAFreq, DFAAmp).

ROC curves enable to compare Group1 and Group2 by ob-

servation of the performances of the model to discriminate

the 2 classes ω1 and ω2 (see Figure 2). For each ROC curve

the best balance between Se and Sp are shown in Table 3.

Table 3. Best balance between Se and Sp extracted from

ROC curves of the EM-GMM-based bayesian classifica-

tion and the corresponding AUC with associated 95% CIs.

Se Sp AUC (CI 95%)

Group1 71.4 89.1 0.82

(0.79-0.84)

Group2 60 63.6 0.65

(0.63-0.66)

Figure 2. ROC curves for the classification OR versus VF

considering data from Group1 (in red dotted line) or data

from Group2 (in blue solid line with circles).

5. Discussion and conclusions

When considering successive shocks from one patient

(Group2), to discriminate classes ω1 and ω2, we assist to

a decrease in the performances. AUC drops from 0.82

(95% CI 0.79-0.84) to 0.65 (95% CI 0.63-0.66), that leads

to suppose the presence of a random component, that is

certainly characteristic of an intra-patient correlation. In-

deed, Group2 is including longitudinal data, because sev-

eral shocks are coming from a same patient over time.

543



It has been proposed to analyze OR versus VF, because

it is suspected that ASYS subset is a grey area that is

more difficult to discriminate. But ASYS shock outcome

makes up 60% of the episodes for Group1 and 37% of the

episodes for Group2, that’s why the observations made on

our results should be considered as a first step to be re-

confirmed with a new and more consistent database.

The proposed Gaussian Mixture Model (GMM)-based

bayesian classifier hold promise for predicting the first de-

fibrillation outcome at 5 s post-shock. When applying the

classifier to longitudinal data, within-patient correlation

affects the prediction accuracy. For clinical application,

ASYS rhythm remains a grey area, which still requires fur-

ther investigations.
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