
Performance of VF Detection Parameters

in an Algorithm Design Scenario and in a Real Resuscitation Scenario

Unai Ayala, Unai Irusta, Erik Alonso, Digna Gonzalez

University of the Basque Country, Bilbao, Spain

Abstract

Detection of Ventricular fibrillation (VF) in automated

external defibrillators (AED) is tested following the

recommendations of the American Heart Association

(AHA). However, nonshockable out-of-hospital cardiac

arrest (OHCA) rhythms may be very different from those

covered in the AHA recommendations. In this study we

compare the performance of four VF detection parameters

for a testing database of rhythms covered by the AHA

recommendations and a database of OHCA rhythms.

Spectral parameters performed better than parameters

related to the heart rate or the complexity for the

testing database but worse for the OHCA database. The

performance of the parameters was very different in

an algorithm design scenario compliant with the AHA

statement and in a real resuscitation scenario.

1. Introduction

Ventricular Fibrillation (VF) is the first observed rhythm

in 40 % of out-of-hospital cardiac arrest (OHCA). The

most important determinant of survival from VF cardiac

arrest is early defibrillation, which out of hospital is

normally provided by an automated external defibrillator

(AED). The AED automatically analyzes the patient’s

ECG rhythm and if VF is detected it instructs the rescuer

to deliver a defibrillation shock.

The framework to test AED rhythm analysis algorithms

was established in a set of recommendations of the

American Heart Association (AHA) [1]. Several classical

VF detection methods have been extensively tested within

the AHA framework using public ECG databases from

adult patients [2, 3], and proprietary rhythm databases

from adult and pediatric patients [4]. The AHA puts

emphasis on security to avoid unnecessary shocks, that

may damage the heart, in patients with nonshockable

rhythms and a palpable pulse. However, the most frequent

nonshockable rhythms in OHCA, asystole and pulseless

electrical activity (PEA), occur in patients with no palpable

pulse. Fig. 1 shows three examples of OHCA PEA, with
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Figure 1. Three examples of PEA from OHCA episodes

different rates and morphology, but without narrow QRS

complexes found in pulsed rhythms.

The aim of this study is to assess how the performance of

four well-known VF detection parameters changes when a

database of AHA compliant rhythms or a database of real

OHCA rhythms are used.

2. Materials and methods

2.1. ECG databases

We used two databases of surface ECG rhythms:

a testing database of rhythms covered in the AHA

recommendations, and a database of OHCA rhythms.

Asystole was excluded from the study because we only

considered ECG rhythms that displayed cardiac electrical

activity.

Testing database

We extracted ECG data from public databases

containing at least 10 s of a pure rhythm. We used

the CU ventricular tachyarrhythmia, the AHA series 1,
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and the MIT-BIH databases1. The extracted ECG were

visually selected and the rhythms were classified in

the AHA rhythm types according to the annotations

in the databases and the visual inspection of the

rhythms. Nonshockable rhythms included normal sinus

rhythm (NSR), atrial fibrillation (AF), supraventricular

tachycardia (SVT), premature ventricular contractions

(PVC), sinus bradycardia (SB), heart blocks and other

nonshockable arrhythmias.

We selected a total of 575 rhythms from 242 records for

this study. All channels were included totaling 1057 ECG

samples, Table 1 presents a summary of the composition

of the database. The ECG were resampled to 250 Hz

and filtered with an order 10 high-pass filter with a

0.8 Hz cutoff to remove baseline wander and an order 14

chebyschev bandstop filter centered at 60 Hz to remove

power line interference.

OHCA rhythms

The database of OHCA rhythms is a subset of a

large database acquired in a prospective study of OHCA

patients [5]. Nonshockable rhythms were classified into

asystole, PEA and pulse-giving rhythms (PR) by expert

reviewers. Both PEA and PR were rhythms with QRS

complexes but with (PR) or without (PEA) blood flow.

Blood flow was indicated by a clinically detected pulse

or by changes induced in the thoracic impedance [5]. Our

subset contains 83 VF and 204 nonshockable (166 PEA

and 38 PR) rhythms, with a duration of 10 s.

The surface ECG was acquired using the Laerdal

HeartStart 4000 defibrillator, at a sampling rate of 500 Hz

and 16 bits for a resolution of 1.031 µV per least significant

bit. The ECG acquisition bandwith was 0.9–50 Hz. The

rhythms in our subset were resampled to 250 Hz and power

line interference was removed using a 14 order chebyschev

bandstop filter centered at 50 Hz.

2.2. VF detection parameters

We analyzed four VF detection parameters. Two are

related to the spectral concentration of the ECG, A2 [6] and

the VF leakage (VFleak) [7], another is a measure of the

complexity of the ECG (CM) [8] and finally the Threshold

Crossing Interval (TCI) [9], a time-domain estimate of the

heart rate. The parameters were computed for 8 s ECG

segments as done in [2,3], we used the 1–9 s interval of the

ECG in our databases.

VFleak. First the mean period of the ECG is estimated

and then the ECG is combined with a copy shifted half

1The MIT-BIH arrhythmia, malignant ventricular arrhythmia,
supraventricular arrhythmia, atrial fibrillation and normal sinus rhythm
databases

Table 1. Composition of the testing database. Several

rhythms were extracted from the same record and all ECG

channels of the rhythm were included in the database.

Rhythm type ECG Rhythms Record

Shockable

VF 135 89 50

Nonshockable 922 486 232

NSR 400 206 159

AF 129 65 30

SVT 138 77 59

PVC 149 76 55

SB 37 23 22

Blocks 36 20 15

Other 33 19 16

Total 1057 575 242

a period. VFleak is a measure of the residue after this

process. For a purely sinusoidal signal the combination

of the signal and its shifted version cancels out. The

waveform of VF rhythms is more sinus-like than that

of nonshockable rhythms with narrow QRS complexes,

VFleak is therefore smaller for VF than for nonshockable

rhythms.

A2. First the FFT of the Hamming-windowed ECG

segment is computed and components with amplitudes

smaller than 5 % of the maximum amplitude are set to zero.

Then, the frequency (F) corresponding to the maximum

amplitude in the 0.5–9 Hz band is identified. A2 is the

ratio of the area of the amplitudes in the 0.7F–1.4F band

to the total area. VF concentrates its spectrum in a narrow

band around F while nonshockable rhythms distribute their

energy in the harmonics of the cardiac frequency due to

fast changing QRS complexes. A2 is therefore larger for

VF than for nonshockable rhythms.

CM. First the ECG is binarized as described in [8]. CM

is the normalized value of the Lempel-Ziv complexity

measure of the binary sequence and measures the rate of

occurrence of new patterns within the binary sequence. VF

is inherently more complex than nonshockable rhythms,

CM is therefore larger for VF than for nonshockable

rhythms.

TCI. First, a heart beat is detected every time the ECG

crosses the detection threshold, which adjusts dynamically

every second to 20 % of the peak value of the signal during

that second. TCI is calculated every second as the mean

interval between consecutive beats. For an 8 s segment

there are 8 TCI values, we assigned the average value to

the 8 s segment. During VF the ventricular activity is fast

and the ECG presents lower interbeat intervals than for
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nonshockable rhythms. TCI is therefore smaller for VF

than for nonshockable rhythms.

3. Results

We computed each parameter for the 8 s ECG segments

in the two databases. Table 2 shows the mean value of

the parameters per rhythm type. The values obtained for

VF in both databases are similar for all parameters except

A2. A2 is smaller and the spectral spread larger in VF

from the OHCA database. However, the most important

differences occur among nonshockable rhythms. VFleak

decreases and A2 increases for nonshockable rhythms

from OHCA. This shows that PEA, particularly wide

complex PEA, has a much smaller spectral spread than

the nonshockable rhythms from public databases which

normally have larger bandwidths due to narrow QRS

complexes. The mean value of TCI for nonshockable

rhythms is larger in the OHCA database (410 ms) than

in the testing database (390 ms). In particular, the

TCI value for SVT is comparable to that of VF. Fast

supraventricular rhythms covered in the AHA statement

may present rates comparable to the ventricular rate

of VF, something that rarely occurs with OHCA PEA.

Nonshockable rhythms present a smaller complexity when

obtained in an OHCA setting. The process to compute

CM involves a binarization phase linked to the rate of

the rhythm, faster rhythms present larger CM values, as

evidenced by the values obtained for SVT, RSN and SB.

The detection performance of the parameters was

evaluated by comparing the decision of the VF detection

algorithm to the annotated rhythm types. In this manner

we computed the proportions of correctly identified VF

(sensitivity) and nonshockable rhythms (specificity). Then

we evaluated the sensitivity and specificity for each

Table 2. Value of the parameters (mean and std) per

rhythm type for the testing and the OHCA databases.

Rhythm VFleak A2 CM TCI (ms)

T
es

ti
n

g

VF 0.55 (0.15) 0.52 (0.15) 0.25 (0.08) 226 (90)

RSN 0.80 (0.06) 0.14 (0.07) 0.18 (0.09) 433 (231)

AF 0.78 (0.06) 0.15 (0.07) 0.21 (0.09) 407 (201)

SVT 0.76 (0.06) 0.17 (0.10) 0.23 (0.08) 282 (124)

PVC 0.77 (0.06) 0.21 (0.07) 0.20 (0.08) 324 (120)

SB 0.81 (0.06) 0.16 (0.08) 0.14 (0.07) 514 (200)

Blocks 0.75 (0.08) 0.20 (0.09) 0.16 (0.04) 413 (161)

Other 0.77 (0.06) 0.18 (0.08) 0.15 (0.05) 413 (163)

O
H

C
A

VF 0.56 (0.11) 0.42 (0.13) 0.26 (0.06) 216 (54)

PEA 0.69 (0.09) 0.29 (0.11) 0.15 (0.05) 424 (160)

PR 0.70 (0.10) 0.26 (0.12) 0.18 (0.05) 345 (155)

decision threshold to calculate the receiver operating

characteristics (ROC) curve. The global performance of

the VF detection parameters were assessed in terms of the

area under the ROC curve (AUC). Fig. 2(a) and Fig. 2(b)

show the ROC curves for the four parameters for the

testing and the OHCA databases respectively. Table 3

is a summary of the ROC curve analysis including the

AUC value, the sensitivity for a 95 % specificity (the

minimum value recommended by the AHA for OHCA

nonshockable rhythms) and the specificity for a 90 %

sensitivity (the minimum value recommended by the AHA

for VF). VFleak and A2 are more accurate than CM and

TCI for the testing database. However when applied

to OHCA rhythms the performance of A2 and VFleak

degrades substantially and the performance of CM and

TCI improves. The latter present a better detection

performance for OHCA rhythms.

Table 3. ROC analysis for the VF detection parameters for

the testing and the OHCA databases.

Testing OHCA

Param AUC Se a Sp b AUC Se a Sp b

VFleak 0.90 81% 51% 0.81 40% 48%

A2 0.97 91% 96% 0.81 45% 39%

CM 0.74 12% 44% 0.91 49% 76%

TCI 0.78 16% 55% 0.89 37% 73%

a Sensitivity for a 95 % specificity.
b Specificity for a 90 % sensitivity.

4. Discussion and conclusions

Parameters that measure the spectral concentration,

VFleak and A2, have been reported to be more accurate

than CM and TCI in studies using adult rhythms extracted

from public databases[2, 3] and AHA compliant databases

of adult and pediatric rhythms[4]. Our results confirm

those previous findings. However, in an OHCA scenario

the performance of A2 and VFleak degrades substantially

and the performance of CM and TCI improves above that

of A2 and VFleak.

The degradation of the performance of VFleak and

A2 for OHCA rhythms has two reasons. VF gathered

out-of-hospital is normally prolonged VF and the rhythm

may have deteriorated. VF obtained from public databases

is normally closer to the onset of the arrhythmia and

shows a larger spectral concentration. More importantly

nonshockable rhythms in OHCA, particularly PEA, are

frequently associated to slow ventricular rhythms with

wide QRS complexes, which result in a larger spectral

concentration than rhythms with narrow QRS complexes.
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Figure 2. ROC curves for the VF detection parameters for the testing database and the OHCA database.

The performance of TCI and CM improves for

OHCA rhythms because nonshockable rhythms in an

out-of-hospital setting have lower rates. The AHA

puts emphasis on security and therefore covers fast

nonshockable rhythms, in fact high rate pediatric

SVT has been identified as a problematic arrhythmia

when AED algorithms are adapted for pediatric use.

However, fast supraventricular rhythms that compromise

the performance of TCI or CM are not frequently observed

in an OHCA scenario.

This study shows that parameters applicable to AED

rhythm recognition may perform very differently in an

algorithm design/test scenario compliant with the AHA

statement and in a real application/resuscitation scenario.
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