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Abstract 

Ambulatory blood pressure monitoring (ABPM) 

devices provide 24-hour profiles of mean arterial 

pressure (MAP) and heart rate (HR) by inflating an arm-

cuff every 15 minutes during daytime and every 20 

minutes during night-time. Aim of this work is to evaluate 

whether the intrinsic structure of ABPM dynamics can be 

described during day and night subperiods by calculating 

the fractal dimension (FD) of MAP and HR. 

For this aim, first we evaluated the performances a 

recently proposed FD estimator on short segments of 

fractional Brownian motions. Then we applied the new 

FD estimator on 24-hour ABPM recordings of two 

healthy volunteers. The FD estimator showed good 

performances on synthesized data, with lower bias 

compared to Higuchi�s method. FD estimates of real data 

tended to be higher during the day. In particular, FD of 

daytime MAP (1.84 ±0.06 M±SD) was substantially 

higher than 1.5, suggesting that anticorrelation 

mechanisms may influence the diurnal long-term 

regulation of blood pressure 

 

1. Introduction 

Ambulatory blood pressure monitoring (ABPM) 

devices are more and more used to provide profiles of 

mean arterial pressure (MAP), systolic and diastolic  

blood pressure (BP), and heart rate (HR) over the 24 

hours in freely moving subjects. ABPM devices measure 

arterial BP by inflating and slowly deflating an arm cuff. 

Auscultatory ABPM devices identify systolic and 

diastolic BP directly by detecting the Korotkoff sounds 

with a microphone, and derive MAP indirectly from 

systolic and diastolic BP values. Oscillometric ABPM 

devices measure MAP directly from vibrations produced 

by the arterial walls and calculates systolic and diastolic 

BP through specific algorithms. In any case, the 

frequency at which the measures are performed cannot be 

too high in order to avoid interfering with patients 

activities or compromising the quality of sleep. For these 

reasons, measures are usually performed every 15 

minutes during day-time and every 20 minutes at night. 

The clinical value of ABPM devices consists in their 

ability to recognize white coat hypertension, masked 

hypertension or alterations in dipping patterns at night 

from BP levels calculated over standardised day-time and 

night-time subperiods (1-3). The availability of different 

measures over day-time (usually 48 measures between 10 

AM and 10 PM) and night-time (usually 18 measures 

between 0 AM and 6 AM) might also allow deriving 

useful information from BP and HR variability during the 

day and the night. Till now, however, the only parameters 

describing the BP dynamics from ABPM devices are the 

amplitudes of BP and HR oscillations as quantified by 

day-time and night-time standard deviations, taken 

separately or combined in a single weighted average (4). 

No measures of the intrinsic structure of BP or HR 

dynamics during day-time or night-time are actually 

derived from ABPM devices. 

Aim of the present study is to evaluate the feasibility 

of the estimation of a specific aspect of BP and HR 

dynamics related not to the amplitude of the fluctuations 

but to the degree of long-range dependence and 

�convolutedness� of the time series: the fractal 

dimension, FD.  

Algorithms for estimating FD usually requires a large 

number of samples. By contrast, time series from ABPM 

devices are relatively short due to their low sampling rate. 

Therefore the first part of this work makes use of 

synthesised series and evaluates the performances of a 

recently proposed algorithm for estimating FD which 

seems suitable for analysing relatively short time series 

(4).  

The second part of the study applies the same FD 

algorithm to ABPM recordings obtained in two healthy 

volunteers in order to provide the first description of BP 

and HR �convolutedness� during day and night in terms 

of fractal dimension.   
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2. FD estimation of short time series 

This section evaluates the performances of a recently 

proposed algorithm (corrected fractal dimension, FDC) 

for estimating the FD of short time series (5). The method 

is evaluated by analysing segments of synthesized data 

with known theoretical FD. The length of simulated 

segments is the same of ABPM data obtainable during 

daytime or night-time sub-periods. Performances are 

compared with those of the Higuchi�s algorithm, FDH. 

 

2.1. Corrected fractal dimension, FDC. 

The algorithm is based on the correction of a 

fundamental flaw in the popular Katz�s method (6). The 

Katz�s method was inspired by the Mandelbrot�s 

suggestion that the fractal dimension of a river can be 

calculated from the river length, L, and the distance 

between source and mouth, d, as: 

FD=log(L)/log(d)    (1). 

In order to calculate the fractal dimension of a 

waveform composed by n points {yi} measured at times 

{ti}, with 1≤i≤n, Katz proposed to plot a bidimensional 

curve in the Y-T space defined by points of coordinates 

(ti, yi), and to apply eq.(1) to this curve. The Euclidean 

distance between two points, i and j, of the curve was 

defined as: 
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By normalizing d and L by the length of the average 

step, L/(n-1), eq.(1) becomes: 

FD= ( ) ( ) ( )log 1 log 1 log dn n
L

⎡ ⎤− − +⎣ ⎦  (5). 

The critical point of this approach is that ti and yi are 

intrinsically different quantities, being one the time index 

and the other the measured quantity. For this reason, the 

distance in eq.2 is not well defined. To overcome this 

problem, it has been proposed to calculate eq. (5) directly 

on the mono-dimensional space Y defined by the n 

coordinates {yi} (5). In this way length L and extension d 

of the curve are: 
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It should be considered, however, that the direct 

application of (6) and (7) in (1) may lead to 

overestimating the true FD when data are strongly anti-

correlated. In this case the curve tends to �retrace its 

steps�: therefore d may tend to an asymptotic value while 

L increases indefinitely. For instance, this happens when 

the curve describes a periodic trajectory every P samples, 

like a sinusoid of amplitude A and period P. In this case d 

reaches its maximum value, A, after one period P while L 

continues to increase with n, leading FD to rise 

logarithmically with n. To avoid this overestimation, the 

proposed method calculates L and d over the subset of the 

n points for which the extension d is half the value 

measured for the whole dataset.  

The procedure is summarized by the following steps: 

1. d is calculated from the whole dataset as in eq.(7); 

2. the dataset is scanned to identify the average size nW 

with extension at least equal to d/2 (in any case nW should 

not be lower than 8 samples for statistical consistency); 

3. the dataset is split into M consecutive, overlapped 

windows of nW points, and the fractal dimension FDi is 

calculated in each window �i� by eq.(5)-(7); 

4. FD of the whole dataset is estimated as the median 

value of FDi (1≤ i ≤M).  

Let�s call �corrected� FD, i.e., FDC, this estimate 

obtained by correcting the original Katz�s method. 

   

2.2. Higuchi�s fractal dimension, FDH. 

Another popular method for assessing the fractal 

dimension of a time series is due to Higuchi (7). Given 

the series {yi} of N points, first an interval time k is 

selected and k time series are constructed from {yi} as: 

ym, ym+k, ym+2k,..., ym+Pk  

with P the integer part of the fraction (N-i)/k and 1≤m≤k. 

The length of each curve m is: 
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The average length for all the m curves generated by the 

interval k is: 

L(k)= ( )
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j

L k
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For a fractal time series, L(k)∝k-FD and FD can be 

estimated as slope of the regression line between L(k) and 

k in a log-log scale. Therefore the Higuchi�s method 

calculates L(k) for k between 1 and kMAX. Usually kMAX is 

set equal to 5. Let�s call FDH the estimation of FD by the 

Higuchi�s method. In this work, FDH has been estimated 

by means of the code provided in (8). 

 

2.3. Synthesized data 

The FDC and FDH algorithms were tested by 

synthesising segments of fractional Brownian motion 

with theoretical FD between 1 and 2. The Matlab function 

wfbm(H,n) with H the Hurst exponent, was used to 

synthesize 100 time series for each fractal dimension 
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FD=2-H and for sample sizes N=18 and N=48. These 

sample sizes correspond to the same length of ABPM 

time series recorded during night-time or daytime sub-

periods. 

 

3. Simulation results 

Figure 1 shows mean values of FDC and FDH estimates 

obtained for data segments synthesised at different 

theoretical FD values. As expected, estimates are closer to 

the theoretical value (dashed line) when longer segments 

are analysed (N=48). Both methods show a similar 

positive bias when the true FD is lower than 1.2. 

However, at difference from FDC, FDH also shows  

negative bias, underestimating the theoretical value when 

FD is greater than 1.8. No substantial differences appear 

in FDH when kMAX decreases from kMAX=5, value 

traditionally selected in most studies, up to kMAX=2. 

The absolute error, as percentage of the theoretical FD, 

is reported in table 1 for FDC and for FDH, this latter 

estimated with kMAX=5. FDC provides lower estimation 

bias over almost the whole range of FD values. 

 

4. Application on real data 

4.1. Subjects and methods 

The FDC estimator was applied on real ABPM data 

recorded on two healthy volunteers (females, age 41 and 

29 years). The 24-hour ABPM recordings were 

performed with an oscillometric device (AND TM2430, 

A&D Company, Tokyo, Japan). Recordings were 

performed twice, at about one month interval, in each 

subject.  

Figure 2 shows an example of MAP and HR series 

over the 24 hours. The figure also indicates the position 

of day-time (48 measures) and night-time (18 measures) 

sub-periods selected for FD analysis.  

Mean value, standard deviation (SD) and FDC of MAP 

and HR were calculated in each recording separately over 

day-time and night-time. Measures repeated in the same 

subject at one-month interval were averaged.  

 
Figure 2. Example of ABPM values of MAP and HR 

measured in one volunteer over the 24 hours, with 

selected day-time and night-time subperiods. 

 

4.2. Results 

In both of our volunteers, MAP and HR mean levels 

decreased from daytime to night-time subperiods. Mean 

values ±SD were: 90.2 ±6.1 vs. 73.7 ±2.1 mmHg for 

MAP; 72.9 ±7.5 vs. 61.8 ±10.0 bpm for HR. Also SD of 

Table 1. Absolute error of FDC and FDH estimates as 

percentage of the theoretical FD value for segments of 

synthetised fractional Brownian motion of length equal 

to 18 and 48 samples. 

 N=18 N=48 

FD FDC FDH FDC FDH 
1.0 12.9% 14.8% 9.9% 9.8%

1.1 6.1% 9.9% 3.3% 4.1%

1.2 0.3% 2.3% 3.3% 2.7%

1.3 1.2% 5.6% 0.7% 2.5%

1.4 0.8% 2.3% 0.1% 0.4%

1.5 1.2% 3.5% 1.4% 1.9%

1.6 0.1% 2.7% 0.7% 0.1%

1.7 3.7% 1.9% 0.2% 0.9%

1.8 0.3% 0.5% 0.4% 0.7%

1.9 0.6% 1.3% 1.0% 2.2%

2.0 1.4% 3.9% 0.8% 4.7%

FDH  estimated with kMAX=5  

Figure 1. Mean values of FDC (upper panels) and FDH 

(lower panels) for segments of fractional Brownian 

motions with theoretical FD between 1 and 2 and length 

N equal to 18 or 48 samples. 
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MAP and HR decreased from daytime to nightime in both 

subjects. Individual values are shown in figure 3 (lower 

panels). On average, SD decreased from 10.8 ±1.5 to 7.6 

±1.6 mmHg for MAP, and from 11.2 ±3.6 to 5.5 ±0.6 

bpm for HR. 

 

Table 2. FDC estimates (mean ±SD) 

 Day-time Night-time 

MAP 1.84 ±0.06 1.59 ±0.27 

HR 1.63 ±0.10 1.48 ±0.23 

 

Also FDC estimates tended to decrease from day-time 

to night-time (see table 2). However, at differences from 

SD changes, which decreased consistently in both 

subjects, night-day changes of FDC were not 

homogeneous. In fact, FDC decreased substantially from 

day to night in both MAP and HR, falling to values lower 

than 1.5 at night, in one of the volunteers while in the 

other volunteer FDC decreased only slightly for MAP, 

and even increased slightly for HR, remaining higher than 

1.5 in both sub-periods. 

 
Figure 3. Estimates of FD and SD of MAP and HR during 

daytime and night-time subperiods in two volunteers. 

 

5. Comments and conclusions 

Aim of this work was to evaluate the feasibility of FD 

assessment in MAP and HR series recorded with ABPM 

devices. Given the low sampling rate of these devices, 

and the resulting short length of night-time and day-time 

series, our main concern regarded the availability of valid 

algorithms for FD estimation of very short series. The 

analysis with synthesized data showed that the recently 

proposed FDC method can provide FD estimates with 

negligible bias even with data segments of 18 samples 

only. In particular, the FDC estimator has lower bias 

compared to the classic Higuchi�s method when high FDs 

are considered. This property is useful given the high FD 

estimates obtained for real MAP data. 

The application of the method on ABPM data in two 

healthy subjects only does not allow us deriving  

statistically significant conclusions on night-day 

modulations of FD. However, preliminary data suggest  

some interesting aspects of long-term ABPM dynamics. 

First, FD changes between day and night do not follow 

the substantial changes observed in SD of MAP and HR. 

This would suggest that FD may actually represent 

aspects of long-term cardiovascular control that are not 

described by day-night modulations of SD.  

Second, FDC values of MAP appear remarkably high 

during daytime. In particular, they appear substantially 

greater than 1.5, the FD of a pure Brownian motion. This 

high FD value may suggest the presence of 

anticorrelation mechanisms influencing the diurnal long-

term regulation of blood pressure. 
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