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Abstract 

We present an algorithm for assessing the ECG signal 

quality in real time. The algorithm is designed for small 

systems with low computational power. 

The method estimates the ECG cepstrum on a running 

window of 10 s and calculates the power of the highest 

peak in the �quefrency� band of the mean cardiac 

interval (between 0.25 and 2.0 s). If the ECG is corrupted 

by noise, the power of this cepstral peak is just a fraction 

of the total power. The ECG quality index (QI) is defined 

as ratio between the power of the cepstral peak and the 

total cepstral power. Examples with ECG of different 

signal quality from different leads illustrate the method. 

Moreover, two overnight ECG recordings were analyzed 

by setting the threshold for ECG acceptability at 

QI>0.40. ECG signals were classified acceptable for 

99.8% and 60% respectively of the recordings time. 

These percentages were similar to those scored visually 

by an expert operator (100% and 67% respectively). 

 

1. Introduction 

Recent advancements in sensors technologies are 

making it possible to monitor physiological signals and 

behavioural data unobstrusively for long periods. This 

and the parallel progress of ambient intelligence (i.e., 

information technologies for acquiring knowledge about a 

monitored environment and for reacting automatically to 

its events) open new scenarios for ambient-assisted living 

applications. 

An example of these applications is the Ambient Aware 

Assitance (ACUBE) project (1), aimed at developing a 

smart environment for elderly or disabled people in 

nursing homes. ACUBE consists of three computational 

levels. The lower level is a sophisticated sensing 

architecture for collecting physiological and behavioural 

data. This includes long-term ECG recordings obtained 

by wearable devices based on textile sensors (2). The 

second level consists of processing algorithms to 

recognize specific events (like anomalies in heart rate 

variability), while the upper level represents the �system 

intelligence� to operate decisions in support of medical 

and assistance staff. In such applications, it is highly 

advisable that the sensing device itself provides 

information on the quality of the recorded signals. This 

avoids that higher computing levels analyse meaningless 

data or operate decisions on the base of unreliable 

information. 

To address this issue, we developed an algorithm for 

online quantification of ECG signal quality in the context 

of ambient-assisted living applications. The algorithm is 

designed for running on microprocessors with low 

computational power, and for working with any ECG 

derivation. In case of multi-lead recordings, the algorithm 

should be able to recognize the best lead allowing to 

temporarily exclude leads which become too noisy 

because of changes in posture or activity levels. 

The algorithm is based on the cepstral analysis of ECG 

for quantifying periodic patterns with period in the 

physiological range of the R-R interval. This paper 

describes the algorithm and illustrates its performances by 

applying it to segments of ECG recordings with different 

signal quality.  

 

2. Cepstral based assessment of ECG 

signal quality 

In case of high signal-to-noise ratios, an ECG segment 

of few beats appear as �quasi-periodic� function, with 

period equal to the inverse of the heart rate, 1/fHR. This 

means that the Fourier spectrum is mainly composed by 

harmonics at multiples of the fundamental frequency fHR. 

This spectral pattern is lost if high levels of noise 

corrupt the ECG. Therefore the proposed algorithm 

evaluates the quality of the ECG recording by verifying 

whether its Fourier spectrum is composed by a series of 

spectral peaks spaced at multiples of the mean heart rate. 
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The algorithm is based on the evaluation of the power 

Cepstrum of the ECG (3;4). The Cepstrum of a signal x(t) 

is the power spectrum of the logarithm of its power 

spectrum. Since the power spectrum of x(t) can be 

expressed as the squared magnitude of the Fourier 

Transform, FT, of x(t), i.e., PSD(f)=| FT{x(t)} |2, 

similarly the power Cepstrum of x(t) can be expressed as 

CPS(t)=| FT {log(PSD(f))}|2. 

The cepstral analysis is useful to quantify how close 

the ECG spectrum resembles a sequence of equispaced 

peaks. In fact, after the calculation of the logarithm of the 

ECG spectrum, the sequence of peaks at multiples of fHR 

Hz (the mean heart rate) appears smoothed and more 

similar to a dumped oscillation with period fHR Hz. If the 

log-spectrum is treated as a new signal, the role of the 

time variable t is played by the frequency variable f. The 

power spectrum of such a frequency-domain signal can be 

estimated and will show a peak corresponding to the 

oscillation with period fHR Hz. Since the signal is function 

of a frequency variable in Hertz, its spectrum (i.e., the 

power cepstrum), is function of a temporal variable, in 

seconds, called �quefrency�. Therefore, the sequence of 

equispaced peaks in the ECG spectrum will result in a 

main cepstral peak centred on the 1/ fHR quefrency. The 

proposed algorithm is based on these properties and is 

illustrated in figure 1.  

The first step is to calculate the ECG power spectrum 

(FFT after Hann data windowing) over a running window 

of 10 seconds. The example of figure 1 (panel b, left) 

clearly shows the sequence of equispaced peaks 

characterizing the power spectra of ECG waveforms. The 

peak amplitude decrease starting from frequency higher 

than 20 Hz. Therefore cepstral analysis is performed only 

on the portion of the ECG spectrum where the peaks 

amplitude remains roughly constant, i.e., up to 20 Hz. 

The second step is to calculate the log spectrum and to 

linearly detrend it. The sequence of log-transformed 

peaks appears as a dumped oscillation (panels c, left). The 

spectrum is smoothed by a moving average of order 3 and 

data windowed (10% cosine-taper, panels d). 

Finally the FFT spectrum is calculated obtaining the 

power cepstrum. In the example of figure 1 (panels e), the 

cepstrum is plotted between 0.05 and 3 seconds. The 

lower limit is defined by the length of the input signal, 

PSD(f). Since the spectrum is limited to 20 Hz, cepstral 

components at quefrencies lower than 1/20=0.05 s cannot 

be resolved. The cepstrum (panels e, left) shows a main 

peak occurring at 700 ms, corresponding to the mean R-R 

interval. When noise importantly affect the ECG signal 

(figure 1, panel a, right) the typical spectral pattern is lost 

(panel b, right) and no oscillations appear in the log 

spectrum (panels c and d, right). Consequently, also a 

dominant spectral peak in the physiological band of the 

mean R-R interval does not appear (panels e, right). 

To quantify numerically the ECG signal quality, we 

defined a quality index, QI, as the ratio between the 

power of the main cepstral peak and the total cepstral 

power between 0.05 and 3 s. The main cepstral peak is 

identified as the highest peak in the physiological band 

where the mean R-R interval is expected to fall, i.e., 

between 0.25 and 2 s. Its power is calculated by 

integrating the cepstrum over a quefrency band centred on 

the maximum and ample ±0.3 s. The QI index may range 

between 0 (lowest quality) and 1 (highest quality). 

A test evaluates whether the maximum cepstral peak in 

the physiological band can be actually considered the 

genuine peak produced by the mean R-R interval. A 

threshold equal to the third percentile of the peak is 

calculated. If the cepstrum overcrosses this threshold one 

and only one time in the physiological band (0.25-2 s), 

then the peak is assumed to be the true peak associated to 

the mean R-R interval. If the test is not passed, the peak is 

discarded and QI is set at 0. 

 
Figure 1. Illustration of the algorithm. The method is 

applied on running windows of 10 s (panels a). FFT 

spectra are estimated (panels b), log-transformed 

between 0 and 20 Hz (panels c), smoothed and 

windowed (panels d). In absence of noise (left), the log-

spectrum appears as a dumped oscillation producing a 

dominant cepstral peak at the quefrency of the mean R-R 

interval (panel e). This structure may be lost in case of 

noise (right panels). The quality index, QI, is the ratio 

between the power of the main cepstral peak (if present) 

and the total cepstral power. 
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3. Applications on ECG data segments 

To evaluate its performances, the algorithm has been 

applied on segments of ECG signals from different leads, 

with different heart rates and different signal-to-noise 

ratios. 

Effects of mean heart rate. To evaluate whether the 

algorithm is sensitive to the mean heart rate, we 

compared two ECG segments recorded in young healthy 

volunteers during supine rest and during an incremental 

exercise test at the cycloergometer. ECG was derived 

from the II Einthoven lead sampled at 200 Hz. The two 

selected ECG segments were characterized by markedly 

different heart rates (160 bpm during exercise and 48 bpm 

at rest), neverthless their signal quality appeared similarly 

high by visual inspection. 

Results of cepstral analysis are shown in figure 2. 

Confirming visual analysis, the quality index was the 

same for the two recordings. In fact, both the cepstra were 

characterized by a main peak falling within the 

physiological quefrency band (0.25-2.0 s). The cepstral 

shapes, however, differed markedly because the main 

peaks felt at the two extremes of the physiological bands, 

reflecting the marked difference in the mean R-R interval.  

Automatic selection of the best lead and identification 

of lead disconnection. The proposed method was also 

designed for automatically selecting the best lead for 

heart rate variability analysis in case of multi-lead 

recordings. To evaluate whether this goal can be 

achieved, we analysed a multilead ECG recording in a 

healthy volunteer during different activities, which 

included periods of supine rest and light physical exercise 

on an arm ergometer. The ECG was recorded by the 

Einthoven 3-lead system, and sampled at 200 Hz. The 

running assessment of QI indicated that during supine rest 

the signal with the best quality was recorded from lead I. 

However, during exercise lead I resulted to be more 

affected by the muscular noise produced by arms 

movements, and lead III became the lead with the best 

signal quality in terms of QI. This classification was 

confirmed by visual analysis of the original ECG data 

(figure 3).  

Similarly, the method could also detect the 

disconnection of an ECG electrode. This event was in fact 

associated to the disappearance of the main cepstral peak 

for two of the three leads (figure 4). 

 
Figure 3. Identification of the ECG lead with best signal quality. Panels show ECG from I and III Einthoven leads and 

their cepstra in the same subject during supine rest and exercise. Lead I has the highest QI during supine rest but during 

exercise it is more prone to muscular noise than lead III, as quantified by the dramatic fall in QI.  

 
Figure 2. Application on ECG recorded in healthy 

volunteers during high load exercise (upper panel, heart 

rate around 160 bpm) and during supine rest (lower 

panels, heart rate around 48 bpm); τ is the quefrency of 

the main peak. 
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Application on polysomnographies. The method was 

also applied to automatically evaluate the quality of two 

ECG recordings in healthy subjects sleeping at night. 

Recordings were obtained with the wearable MagIC 

device (2) at sea-level (subject 1) and at 6800 m asl on a 

camp on Mt Everest (subject 2: see details in (5)).  

The quality of the two recordings was scored visually 

by an expert operator who classified segments of 30 s of 

data as �acceptable� or �not acceptable� for HRV 

analysis. Then, the same classification was performed 

automatically by the algorithm over a running window of 

10 s, by setting an acceptability threshold at QI>0.40. 

The algorithm classified of acceptable quality 99.8% 

(subject 1) and 60% (subject 2) of the tested signals. 

These percentages were similar to those obtained scoring 

the signal quality visually (100% and 67%).  

 

4. Conclusions 

The proposed algorithm is based on simple computing 

procedures which allow its implementation on small 

electronic devices. This makes it possible the real-time 

assessment of ECG signal quality at the �sensor-level�, 

by the same recording devices. 

Despite its computational simplicity, the method seems 

to provide scores of ECG signal quality reasonably 

similar to those provided by expert operators after visual 

classifications. The examples illustrated in this work 

support the use of the proposed method for automatically 

switching to the best lead in multi-lead applications in 

freely moving subjects, and for associating reliability 

scores to the information sent to higher computational 

levels in ambient intelligence systems.  
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Figure 4. Effects of electrode disconnection on ECG 

cepstra from 3-lead Einthoven recording: the main 

cepstral peak associated to the mean R-R interval 

disappears in two of the three leads. 
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