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Abstract

In this paper, we apply a sparse Bayesian learning algo-

rithm called the Relevance Vector Machine (RVM) which

was used to classify the 1126 ischaemic ST events and

1126 non-supply ischaemic ST events in the Long Term

ST Database as supply or non-supply ST episodes. A Ge-

netic Algorithm (GA) method was used to identify which of

the extracted features used as input to the RVM were the

most important with respect to the model’s performance.

The GA indicated that 9 of the 35 extracted features were

the most relevant. The 9 features that were selected are

heart rate variability, slope of the ST segment, energy in

the QRS complex and Mahalanobis distance of the first

five Karhunen Loève Transform of the QRS complex and

ST segment for differentiation between supply and non-

supply ischaemic ST episodes. The classification accuracy

achieved using the 35 features was 80.1% on the test set.

When using the 9 most relevant features determined from

the GA, the classification accuracy rose to 87.4%.

1. Introduction

Myocardial ischaemia is the leading cause of death

in the industrialized countries hence early diagnosis and

treatment are very important [1]. Myocardial ischaemia

stems from insufficient supply of blood to the myocardium

due to blockages in the coronary artery. Myocardial is-

chaemia can be defined as an imbalance between oxy-

gen/nutrient delivery with regard to myocardial require-

ments. Supply ischaemia results from a partial occlusion

of a coronary artery, reducing the amount of oxygenated

blood to the myocardium. The term demand ischaemia

refers to a condition where an increased oxygen demand

caused by exercise, tachycardia or emotion, leads to a tran-

sitory imbalance [1].

ST segment changes provide a sensitive marker for early

diagnosis of myocardial ischaemia in ECG recording [2].

It is also known that changes in the ST segment can re-

sult from a wide variety of other causes such as changes

in heart rate, conduction pattern, position of the subject,

and noise in the ECG. Heart rate-related and ischaemic

ST events are characterized by length and extremum de-

viation. In contrast, body position changes and conduc-

tion changes events are characterized by a sudden shift in

the ST level and the time at which they occur [2]. Heart-

rate related, body position and conduction changes events

can be grouped together as non-supply ischaemic or non-

ischaemic ST events [3]. Several automatic transient ST

segment deviation techniques using various approaches

have been published using the Long-Term ST Database

(LTST DB) [2–6]. In 2003, the Physionet/Computers in

Cardiology Challenge [7] aim was to classify ST changes

as ischaemic or non-supply ischaemic using available an-

notated records of the LTST DB.

In this paper, we introduce the use of the Relevance Vec-

tor Machine (RVM) for classification of supply and non-

supply ischaemic ST episodes. In addition, we introduce

the use of Genetic Algorithm (GA) for feature selection.

The remainder of this paper is structured as follows: The

next section contains a brief description of the technique

used to generate and select the features used to train the

RVM to differentiate between supply and non-supply is-

chaemic ST events. The third section presents the experi-

mental results of applying this technique. The last section

focuses the discussion and conclusion.

2. The methodology

The LTST DB consists of 86, two or three leads, 21 to 24

hour, Holter ECG recordings sampled at 250Hz. The gold

standard for annotating ST episodes was based not only on

ECG waveforms but also on detailed clinical information

from the subjects and the decision of expert annotators of

the database. In the LTST DB non-supply ischaemic ST

events such as heart-rate related events, body position and

conduction changes were also annotated [2].

An episode begins when the magnitude of the ST devi-

ation first exceeds a lower annotation detection threshold,

Vlower. The deviation then must reach or exceed an upper

annotation detection threshold Vupper throughout a contin-
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uous interval of at least Tmin seconds. The episode ends

when the deviation becomes smaller than Vlower, provided

that it remains below Vlower in the following Tsep = 30
seconds. Episode annotations of the LTST DB are avail-

able in three variant annotation protocols:

1. Protocol A Vupper = 75 µV, Tmin = 30 seconds.

2. Protocol B Vupper = 100 µV, Tmin = 30 seconds.

3. Protocol C Vupper = 100 µV, Tmin = 60 seconds.

In this work, we used annotation protocol B to dif-

ferentiate between supply and non-supply ischaemic ST

episodes as the limits of this protocol are very similar to

what clinician used in clinical practise. Annotation proto-

col B consists of 1130 ischaemic ST events, 234 heart-rate

related ST events and 2388 axis-shift ST episodes. In order

to balance the two classes of ischaemic and non-supply is-

chaemic episodes, only 886 of the axis shift episodes were

chosen (at random) in addition to the 234 heart rate-related

episodes. The available data was divided into two sub-

sets; the training and test dataset. The training dataset con-

sisted of 60% of the data and the remaining 40% was al-

located to the test dataset. Before training a classifier, it is

beneficial to transform the features to have the same sam-

ple mean and variance and this was done using zero-mean

unit-variance normalisation.

To estimate how the values of diagnostic and morpho-

logical parameters change during ST episodes, mean val-

ues for each of the parameters, over 20 seconds inter-

val, located 20 ms before the beginning (I1), 20ms after

the beginning (I2), of each ST episode were used. The

changes in the mean feature value in interval I1 with re-

spect to I2 were computed and included as indices to be

used for discriminant analysis. This means that for each

feature, three measures were computed and subscript by

the 1, 2, ∆12) when describing the features. The perfor-

mance metrics used to test the performance of the tech-

nique were: sensitivity (Se), specificity (Sp), positive pre-

dictivity value (+PV), negative predictivity value (-PV)

and accuracy (Acc).

2.1. Feature extraction

Before generating the features, the ECG was prepro-

cessed as follows. The high-frequency powerline noise

was removed using a notch filter, R-peaks were detected

using a QRS detector, baseline wander was removed us-

ing cubic spline interpolation to enable easy location of

the isoelectric line. Abnormal beats were removed using

a template matching algorithm that kept the beats only if

the correlation coefficient between the beats and the tem-

plate was greater than 0.95. Delineation of the ECG was

achieved using a thresholding technique. After extracting

the features, a GA was used for feature selection to select

the most relevant subset of features and this is described in

the next section.

Repolirazation features - The features used to build a

discriminant analyser between supply and non-supply ST

episodes were inspired by [3]. The ST segment morphol-

ogy features extracted from the ST episodes were the ST

segment deviation and slope. The ST level, ST , was mea-

sured at the point J + 60(80) (ms) while ST segment

slope, SL , was measured from J to J + 20ms using

SLi = Ji + 20ms, where i is the beat number. In addi-

tion the root mean square (RMS) of the ST segment shape

change was used to estimate the morphology change of

the entire ST segment from J to J + 120 ms. Lastly,

the Mahalabonis distance of the first five Karhunen Loève

Transform (KLT) coefficients (STMD) from the ST seg-

ment were used [8].

Depolirazation features - As changes also occur in the

depolarization phase (QRS complex) of the ECG during

acute ischaemia, features from the depolarization phase

were also extracted. The upslope (QRSU ) and downslope

(QRSD) of the R-wave were extracted from the ECG us-

ing a modified technique used by [9]. The features that

were selected for estimating the QRS morphology change

along the ST episodes were the RMS value of the signal

from the onset to the peak of the QRS complex (QRRMS),

and the RMS value of the signal from the peak to the off-

set of the QRS complex, (RSRMS). The duration of the

QRS complex, QRSDUR complex, was taken to be from

the onset to the offset of the QRS complex. In addition

the Mahalabonis distances of the first five KLT coefficients

from the QRS segment (QRSMD) were used.

Heart rate-related features - Heart rate was extracted to

add to the feature vector to use to build a classification

system. In addition, heart rate variability (HRV) measures

were computed, and the two measures to be included in the

feature vector were Standard Deviation of Sequential Five-

Minute R-R Interval Means (SDANN) and LF/HF-ratio.

These measures were computed using a five minute win-

dow before the start of an episode. The LF/HF-ratio was

obtained from the power spectral density estimated using

the Lomb-Scarlge periodogram which requires no resam-

pling of unevenly-sampled signals [10].

2.2. Feature selection

GA is a family of heuristic algorithms used as an opti-

mization technique that mimics the mechanisms of evolu-

tion observed in nature selecting individuals with respect

to a given fitness function and ‘breeds’ them over many

generations to find the best set of parameters with respect

to the given fitness function [11].

The GA starts from a population of randomly generated

individuals. Each genome is evaluated by first fitting a

multivariate linear regression model to fit the training set

and validated on the validation set (which in this case is

taken as a 30% subset of our training data). As the re-
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sults may vary according to how the training set is drawn

from the data, the fit function used for the selection of best

genomes is defined by the median of the root mean square

error (RMSE). The selection process used in this work is

elitist such that the 10 best genomes with the lowest RMSE

are passed down to the next generation unaltered.

The next step is to generate a second-generation popu-

lation of solutions from those selected through genetic op-

erators: crossover, and mutation. Each of the 35 genomes

is crossed with one of the first 35 genomes that maximize

their Hamming distance between them and generates 70

children of the next generation. A mutation rate of 1.5%

was applied randomly to 20% of the 35 children generated

by cross-over. The new population is then used in the next

iteration of the algorithm. The algorithm terminates after

100 iterations or an RMSE < 0.05 in terms of the classi-

fication error on the validation set is reached.

2.3. Classification of ST events

The Support Vector Machine (SVM), although is a pow-

erful classifier has a disadvantage that its output is a binary

classification decision and not the class membership pos-

terior probability. Tipping introduced the RVM, which is a

special case of a sparse Bayesian learning algorithm [12].

RVM does not only classify a new input variable, but can

also provide a degree of uncertainty for the classification.

Consider a two-class problem with training data with n
number of samples represented by X = (x1, . . . , xn) hav-

ing class labels C = (c1, . . . , cn) with ci ∈ (0, 1). De-

fine a classifier function y(x) = wTφ(x), where φ is a

continuous feature-space transformation and w is a weight

vector. The RVM has the special form (similar to the SVM

algorithm) given by
∑N

n=1 wn · k(x, xn) + b where k(·) is

the kernel function and b is a bias parameter. Based on the

Bernoulli distribution, the likehood is computed as:

p(c/w) =

n∏

i=1

σ(y(xi))
ci [1− σ(y(xi))]

1−ci (1)

Where σ(y) is the logistic sigmoid function given by

σ(y(x)) = 1
1+exp(−y(x)) . To obtain p(c/w), an iterative

method is used. Let α∗ denotes the maximum a posteriori

estimate of the hyperparameter αi . The maximum a pos-

teriori estimate of the weights (Wm) can be obtained by

maximizing the following objective function:

f(wn) =
n∑

i=1

ln p(ci/wi) +
n∑

i=1

ln p(wi/α
∗

i ) (2)

Where the first summation term corresponds to the like-

hood of the class labels, and the second term corresponds

to the prior on the parameter wi. In the final solution,

the gradient of objective function f with respect to w

is calculated and only those training data points having

nonzero coefficients (relevance vectors) contribute to the

decision function. The posterior probability is approxi-

mated around Wm by a Gaussian approximation with co-

variance Σ = −(H|Wm
)−1 and mean µ = ΣΦTB, where

H is the Hessian of f , matrix Φ has elements φij =
k(xi, xj) and B is a diagonal matrix with elements de-

fined by σ(y(xi))[1 − σ(y(xi))]. An iterative procedure

is used to find the set of weights to maximize the func-

tion (2) in which the hyperparameters αi, associated with

each weight are updated. A radial basis function kernel

was used to train the RVM.

3. Experimental results

To ensure that the optimal subset of features was se-

lected, the GA was run 50 times and the best model was

selected as the final model. The 9 features selected by the

GA are shown in table 1 along with their mean values,

standard deviation and p-values obtained using one-way

Analysis of Variance (ANOVA). The performance metrics

of the best model on the test set using a linear regression

model were: Sp = 83.4% , Se= 80.7%, +PV= 80.1%, -PV=

80.5% and Acc =82.1% .

Table 1. List of the selected features by GA along

with their mean (µ) and standard deviation (σ) along with

ANOVA p-values according to the annotation protocol B.
Variables Supply

(µ± σ)

Non-supply

(µ± σ)

p-values

STRMS1 85.3±69.6 133.6±101.7 3.4× 10
−18

HR∆12 12.3±12.5 10.6±10.4 1.4×10
−12

QRSMD∆12 352.3±231.2 259.6±114.8 7.0× 10
−11

SL∆12 99.2±67.3 129.2±81.2 3.9×10
−9

ST2 223.2±166.6 151.5±138.1 1.7×10
−9

QRSU∆12 88.9±47.2 131.1±66.2 4.2× 10
−8

STMD∆12 129.2±97.7 81.0±47.7 2.2 ×10
−5

RSRMS∆12 271.3±129.5 306.6±129.8 1.8× 10
−4

LF/HF-ratio 0.5±0.4 0.7±0.5 2.5×10
−1

The RVM was first trained using the full set of 35 fea-

tures to discriminate between supply and non-supply is-

chaemic ST episodes using a linear kernel. In addition to

using a full set of features, the 9 most relevant features as

selected by GA were also used to train and test the RVM.

The RVM models were tested using the test set and the re-

sults achieved are shown in Table 2. The results show that

using 9 selected features achieved better performance than

using the full set of 35 features.

Table 2. Performance of RVM models trained using 9 sub-

set of features selected by GA and the full set of features.

Se

(%)

Sp

(%)

+PV

(%)

-PV

(%)

Acc

(%)

RVM-35 78.5 81.8 72.6 81.7 80.1

RVM-9 88.7 86.8 86.0 86.6 87.4

The posterior probability of the RVM was then used to

635



select the decision boundary with minimum overlap be-

tween correctly and incorrectly classified ST episodes for

both ischaemic and non-supply ischaemic classes as shown

in Figure 1. The decision boundary for ischaemic and non-

supply ischaemic classes were chosen to be at the point of

overlap, p = 0.35 and 0.61, respectively.

Figure 1. Gaussian approximations to the empirical proba-

bility distributions for the posterior probability of correctly

and incorrectly classify ST episodes as ischaemic(a) or

non-supply ischaemic(b) classes along with lower decision

boundaries (red vertical lines at p = 0.35 and 0.61 respec-

tively) to indicate if the classification should be trusted.

4. Discussion and conclusion

In this paper, the problem of distinguishing between

supply and non-supply ischaemic ST events using features

extracted from the ECG was addressed. A subset of the

most relevant features was chosen using a GA and the se-

lected features were then used to train an RVM to classify

supply and non-supply ischaemic ST episodes. The results

achieved using RVM with a reduced subset of features are

comparable with results achieved using other techniques

in the literature. The top scoring entry of the PhysioNet

challenge [4] achieved a performance of Se and +PV of

99.0% and 88.8% respectively on the training data set.

Mincholé et al. [3] used all the protocol B ST events and

employed several features such as heart-rate changes and

morphology-change features from the ST segment along

with linear discriminant analysis. Their technique obtained

a Se of 74.5% and a Sp of 93.2% when discriminating

between ischaemic and non-supply ischaemic ST events.

On the same dataset, Dranca et al. [5] used a mixture of

time-domain analysis and various machine learning tech-

niques such as decision trees to distinguish between is-

chaemic and heart-rate related ST events, and achieved a

Se of 85.7% and +PV of 61.2% using protocol B.

The use of a feature selection tool allowed us to remove

features which only appeared to add noise to the analy-

sis. Moreover, the GA revealed that a particular HRV met-

ric, the LF/HF-ratio (but not the SDANN) was also of use.

Since this metric is known to be susceptible to changes

in the autonomic nervous system, it may be hypothesised

that the inclusion of this metric was related to pain or

stress rather than being highly correlated with ischaemic

episodes. The main advantage of the RVM algorithm is

that it provides the posterior probability of the class mem-

bership. Using a Bayesian interpretation of probability, the

probability of an event can be interpreted as the degree of

uncertainty associated with such an event. This uncertainty

can be used as an additional guide to the clinician to decide

whether or not to re-test a subject.
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