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Abstract 

The aim of our study was to apply two HRV methods 

(PD2i and wavelet-CART) for the individual forecasting 

of ventricular tachycardia (VT) and death in telemedicine 

setting during the cardiac rehabilitation of postinfarction 

patients. Eighty-eight postinfarction patients were ECG 

monitored monthly during 36 months. The predictive 

accuracy of time-frequency HRV variables for ventricular 

tachycardia (VT), wavelet (W;Daub-4) decomposition 

parameters from level 2 (W2) to level 256 (W256)) 

analyzed. The best variable was W32 (W 0.799, 

p<0.0001). Th eCART’s decision sensitivity and 

specificity reaching 84.5% and 91.9% respectively. The 

role of telemedicine management (TM+), and 94 age-

matched control group without it (TM-) were also  

studied. Nine deaths in the TM+, and 21 death in the TM- 

group were observed (p<0.01). The sensitivity, 

specificity, positive and negative predictive accuracy of 

the PD2i values (cutoff 1.9) was 66.4, 79.5, 64. and  

83.7% respectively.  

 

1. Introduction 

The official guideline (and the standards) about heart 

rate variability [1] is dated by 1996, and stated:  

“The parameters which have been used to measure 

non-linear properties of HRV include 1/f scaling of 

Fourier spectra, H scaling exponent, and Coarse Graining 

Spectral Analysis (CGSA)…for data representation, 

Poincarè sections, low-dimension attractor plots, singular 

value decomposition, and attractor trajectories have been 

used…for other quantitative descriptions, the D2 

correlation dimension, Lyapunov exponents, and 

Kolmogorov entropy have been employed. Although in 

principle these techniques have been shown to be 

powerful tools for characterization of various complex 

systems, no major breakthrough has yet been achieved by 

their application to bio-medical data including HRV 

analysis. .. However, no systematic study has been 

conducted to investigate large patient populations using 

these methods. At present, the non-linear methods 

represent potentially promising tools for HRV 

assessment, but standards are lacking and the full scope 

of these methods cannot be assessed. Advances in 

technology and the interpretation of the results of non-

linear methods are needed before these methods are ready 

for physiological and clinical studies.” Several methods 

have been developed during the last 20 years (correlation 

dimension, ) [2-6]  , but these were not approved to the 

standard-of-care.  

Telemedicine can be divided into three areas: aids to 

decision-making, remote sensing, and collaborative 

arrangements for the real-time management of patients at 

a distance. As an aid to decision-making, telemedicine 

includes areas such as remote expert systems that 

contribute to patient diagnosis or the use of online 

databases in the actual practice of medicine. Our work 

demonstrates how to integrate into a telemedicine 

network the non-linear heart rate variability analysis for 

the everyday clinical practice. 

 

2. Method 

For the prospective, internet based HRV analysis 

studies, a telemedicine network have been developed 

some years ago. The mobile equipment was changed 

(from the on-line, GPRS communication route 

(“HeartSpy”) to the store-and-forward, SD card solution 

(“HeartKeeper”), but some technical features remained. 

The sampling rate is 1000 Hz, the ECG recordings did not 

compressed, the filtering did not change the 

determination of the R wave, and the baseline and trend 

removal minimally affect the lower components in the 

spectrum. The automated R wave detection based on a 

training and test set of 1200-1200 patients with normal 

and abnormal ECGs. The proper interpolation on 

preceding/successive beats on the HRV signals is 

essential (the influence of the ectopic beats on non-linear 

HRV analysis). Our clinical database collects the relevant 

clinical data with the 24h ambulatory electrocardiograms 

(AECG). The telemedicine decision support system splits 

the analysis into two parts. The first is named “direct 

ECG analysis”, where the standard AECG analysis is 
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performed within 2-4 hours after the registration 

(supervised by the telemedicine cardiologist far from the 

patient), and the standard non-linear HRV calculations are 

also performed. After the first analysis of the patients 

ECG in the prospective, follow-up study, an individual, 

non-linear HRV “fingerprint” is determined. During the 

repeated examinations of the given patient, the change 

could be determined “dirt on the fingerprint”. In this case  

the patient and his doctor get a message about the 

possible disease worsening. One of the presented two  

studies (PD2i) shows an example about it.  

The second part of our telemedicine system is called 

“indirect clinical ECG analysis”, which is an integrated 

database and calculation system for research purpose. 

Using our telemedicine system some prospective AECG 

studies have been performed [6-9], the ECG recordings 

and the relevant clinical data are collected in the database. 

The complex math/statistical models were calculated in 

the special disease population (general population, 

subjects with high cardiovascular risk, postinfarction or 

heart failure patients and/or with various arrhythmias 

(atrial fibrillation, ventricular malignant arrhythmias). 

The correlation dimension (CD or named D2) of heart 

rate intervals could be determined by three methods: 

pointwise method of Grassberger, the method of Farmer 

and the "point" estimate (PD2i) method by Skinner. In 

this study we used the Skinner method (PD2i) [10]. In 

general, all methods determine the logC(r,n)/log r slopes 

(C(r,n) is the cumulative number of all vector difference 

lengths within a range (r), and n is the number of vector 

difference lengths), and the linear slope represents the 

scaling feature. The PD2i method does not use all 

possible vector lengths, the nref value is fixed. The PD2i 

is a rough estimate of the CD, the slope in the linear 

scaling region is less precise, but this loss is compensated 

for by its lack of sensitivity to data nonstationarities and 

size. 

The correlation dimension (D2) is defined as C(r) =rD 

, where C(r) is the cumulative number of all rank-ordered 

vector differences within a range, r, that begins with the 

smallest and ends with the largest vector difference. 

Vectors of varying time steps, that is, embedding 

dimensions (m), are made; when increasing m no longer 

increases D2 (i.e., convergence occurs), then D2=log 

C(r)/log r. PD2i has the advantage of requiring a small 

data set for analysis of nonstationary signals compared 

with the classic Grasberger-Procaccia determination of 

correlation dimension (D2). Each PD2i reference vector 

(i.e., the vector for a given R-R interval for a given epoch 

size of m RR intervals) remains fixed, whereas each of 

the j vectors (the vector from a given beat to subsequent 

non-neighboring beats) runs through the entire data 

series. The point-D2 uses a fixed beginning point, nref, 

and calculates the vector differences (for a given m) 

relative only to the reference vector anchored at nref. 

Then the cumulative number of this subset of rank-

ordered vector differences, N, within a range, R, is 

determined for the convergent values of m, and the point-

D2=logN/log R. Because nref is chosen sequentially for 

each digitized point in the time series, the point-D2 can 

be estimated as a function of time. For the PD2i algorithm 

the log N versus log R plot for each m was required to 

show large linear ranges of slope. Once tau was selected, 

the vector differences for each m were made and rank 

ordered, and then the cumulative number of vector 

differences, N, within a range, R, were counted, 

beginning with the smallest vector difference. Then the 

log N versus log R plot was made for that embedding 

dimension and tested by the linearity and convergence 

criteria described below. For the linearity criterion, the 

most linear segment in each log N versus log R plot was 

determined by the first derivative of the log N versus log 

R plot was within + 15% of that of an initial slope, which 

had, beginning from the smallest log R value, a minimum 

of 10 points. The new points were added sequentially on 

the log R scale until the calculated first derivative of the 

slope exceeded the ± 15% level; the length of the slope 

then was noted (i.e., the square root of log N' plus log 

R2). Then a new initial slope was constructed, beginning 

with the next smallest log R value, and points were added 

to the initial 10 until again the  “+ 15% rule” was 

exceeded. This procedure was repeated, iteratively, 

starting at each log R value, and a corresponding slope 

segment length was determined. The slope of the longest 

segment, if it covered at least one logl0 unit on the log R 

scale, then was accepted as the measure of D2 for that 

embedding dimension. Value of 0.4 was determined for 

the convergence criterion, minimizing error in the D2 

estimates calculated from the 1,5000-point data samples. 

In our calculations, the same PD2i parameters were used 

as in Skinner’s publications (tau = 1, LC = 0.30, 

convergence criterion (CC) = 0.40, PL = 0.15, PI = 4). 

Artifacts and arrhythmias are generally rejected from 

analysis by the LC and CC criteria in the PD2i algorithm. 

The %N Test was used for rejection of noisy data. 

 In the PD2i study 88 postinfarction patients were 

monitored weekly with our 24 hour one-channel mobile 

ECG equipment for 3 years. Our internet server 

calculated with 1-2 hours delay the correlation 

dimensions, comparing these data with the previous ones. 

In the case of lowering the CD under the cutoff value 

(value of 1.8), the patient was alarmed, and immediate 

(within 6 hours) medical visit was performed. Figure 1. 

shows a 1,500 point segment of the R-R tachogram of a 

patient having critical PD2i values. 

In the second study (wavelet_CART) the predictive 

accuracy of time-frequency HRV variables for ventricular 

tachycardia (VT), wavelet (W) decomposition parameters 

from level 2 (W2) to level 256 (W256)) obtained from the 

24-hour ECG monitoring were analyzed. The method was 

similar to other two studies [11-12].  The Daubechies-4 

W transform was used. 
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Figure 1. R-R intervals tachogram and the PD2i values of 

a 1,500 data segment. 

 

For each record, the W coefficients were calculated on 

sets of 512 RR intervals, giving eight separate levels of 

analysis named W2, W4, W8, W16, W32, W64, W128 

and W256; and, the variability power, level by level, was 

calculated as the sum of squares of the coefficients 

(Figure 2).   

 

 
 

Figure 2. Wavelet coefficients level-by-level 

 

Receiver-operating curve (ROC) analysis was used 

with the areas under the curves (W_area); if W_area = 0.5 

the distributions of the variables are similar, if W_area = 

1.0 there is not overlapping.  The classification tree was 

built using the discriminant variables of stepwise 

regression analysis. The first variable shows the best 

separation between the two groups (VT+ or VT-), the 

other variables were then introduced according to a 

descending order of discriminative capacity. For each 

continuous variable, the cut-off value acting as a 

separator offering the smallest number of 

misclassification (minimizes the sum of false-positive and 

false-negative results). Sensitivity, specificity and 

percentage of agreement were calculated on learning. The 

Classification and Regression Trees (CART) method 

looks at all possible splits for all variables included in the 

analysis. The results are in the form of an inverted tree. 

CART begins with a root node and, through a process of 

yes/no questions, generates descendant nodes. Some 

nodes are terminal, meaning that a final determination for 

classification is reached while other nodes continue to be 

split until terminal nodes are reached. Once a best split is 

found, CART repeats the search process for each child 

node, continuing recursively until further splitting is 

impossible or stopped. Then, CART proceeds by growing 

trees until it is not possible to grow them any further. It 

generates a maximal tree and a set of subtrees.  

 

3. Results 

Eighty-eight postinfarction patients were monitored 

monthly with our mobile 24 hour, one-channel mobile 

ECG equipment with a store-and-forward technique. In 

the case of lowering the PD2i under the cutoff value 

(1.8), an immediate medical visit was performed. During 

the 3 years follow-up 88 patients (age 67+-9.4 m/f 48/40, 

ejection fraction >0.35) with telemedicine management 

(TM+), and 94 age-matched postinfarction control group 

(age 65+-8.3 m/f 50/44, ejection fraction >0.35) without it 

(TM-) were studied. 9 deaths in the TM+, and 21 in the 

TM- group were observed (p<0.01). The sensitivity, 

specificity, positive and negative predictive accuracy of 

the CD values was 66.4, 79.5, 64.1, 83.7%. The CD 

cutoff value of 1.8 showed significant difference (< 

0,001) by the Kaplan-Meier survival curves. 

In the same patient group, the predictive accuracy of 

time-frequency HRV variables for ventricular tachycardia 

(VT), wavelet (W) decomposition parameters from level 

2 (W2) to level 256 (W256)) obtained from 24-hour ECG 

monitoring were analyzed. During the 3 years 11786 

recordings were made and VT of 379 patients were 

observed. The analysis was performed in the time-

segment before 2 hours of the VT.   The Daubechies-4 W 

transform was used. For each record, the W coefficients 

were calculated on sets of 512 RR intervals (the 2-hour 

segment was divided into the 512 R-R intervals, giving 

eight separate levels of analysis named W2, W4, W8, 

W16, W32, W64, W128 and W256. The variability 

power, level by level, was calculated as the sum of 

squares of the coefficients. Using ROC curves analysis, 

the best variable was W32 (W 0.799, p<0.0001), followed 

by W16 (W 0.722, p<0.0001).  

 

Table 1. The result of ROC analysis of the wavelets’ 

variability power and their value of importance. 

687



 

Variable  W-value p-value Rel.imp.% 

W_002 0.498 0.025 44.56 

W_004 0.511 0.033 47.94 

W_008 0.623 0.048 66.78 

W_016 0.727 <0.001 74.92 

W_032 0.794 <0.001 81.34 

W_064 0.612 0.034 56.83 

W_128 0.801 <0.001 100.00 

     W_256 0.373 0.042 39.42 

 

The CART methodology generated a decision tree for 

VT prediction including all levels of W coefficients, from 

W2 to W256 with a sensitivity reaching 84.5% and a 

specificity of 91.9%. 

 

 
 

Figure 3. CART decision tree (abbr.: WvNNN the 

wavelet coefficients; Y=yes, N=no splitting rule; the 

node-number in bracket from (01 to (16)). 

 

4. Conclusion 

The major finding of the study is that the frequent 

internet monitoring of heart rate is capable of predicting 

fatal outcomes not only in statistically, but as an 

individual forecasting. Our result confirms the importance 

of non-linear analysis of heart beat intervals. The 

correlation dimension analysis would have better 

prognostic value in the postinfarction population than the 

alpha1 (short-term scaling exponent), determined by 

detrended fluctuation analysis, and the approximate 

entropy values. Using the internet is a valuable tool in 

arrhythmia detection. The ECG registrations during night 

are sent to the internet server in the morning, where the 

math calculations for the more sophisticated arrhythmia 

analysis are performed. At this time, our solution is 

situated between the online ECG monitoring (with 1-3 

leads) and the offline 12 lead ECG monitoring methods. 

In high risk patients, few hours interpretation delay is 

sufficient in case of frequent monitoring.  In case of 

significant ECG changes, the patients get a message to 

attend the cardiologist.  
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