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2H. Haut-Lévêque, Ave. de Magellan
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Abstract

Heartbeat dynamics is a complex system. To charac-

terize it properly, advanced nonlinear signal-processing

methods are needed. In this context, recent developments

on reconstructible signals and multiscale information con-

tent have led to the Microcanonical Multifractal Formal-

ism (MMF). The MMF provides signal-analysis techniques

particularly suited to heartbeat dynamics. In particu-

lar, electrocardiogram signals and electric potential in the

endocardium allows detecting slow-changing transitions.

Detecting regime transition could be used for early warn-

ing and treatment of cardiac arrhythmias. In this context,

we present an application to the case of Atrial Fibrillation

in which we detect distinctive parameters for the transition

matrix.

1. Introduction

Heart rhythm is formed through complex synchroniza-

tion processes between pacemaker cells and consequently

displays chaotic rate fluctuations. These fluctuations are

tiny compared to average interbeat intervals, so the si-

nus rhythm appear as mainly periodic, but fluctuations

around this main period follow structured complex dynam-

ics. Moreover, the characterization of these fluctuations is

of vital importance in detecting signs of transition to an

arrhythmia, despite appearing regular [1–4].

The human heart has a complex structure and a com-

plex electrical activity. Cardiac action potential is led by

polarization of pacemaker cells. These cells are not ho-

mogeneous, but mainly concentrate on nodes (sinoatrial

and atrioventricular), and the Purkinje fibers that innervate

the whole ventricular myocardium. The action of pace-

maker cells controlling systoles and diastoles in an orga-

nized manner to ensure the optimal pumping [5].

Early studies of interbeat fluctuations found them to

have a multifractal scale-invariant structure [6–8], which

is the result of a complex synchronization process in the

hierarchical network of pacemaker cells [1]. The result-

ing signal reflects the network topology generating it, and

that is why the MMF becomes especially suitable for the

analysis of this dynamic structure. In particular, a analysis

based on the singularity exponents and the optimal wavelet

allows a direct access to the geometric characteristics of

the multiscale behavior. This methodology is known to

give more accurate estimation of the tails of the singularity

spectrum and is generally more robust on empirical data.

Having accurate estimates is of paramount importance to

anticipate as much as possible when the heartbeat starts to

drift from the healthy behavior.

Atrial fibrillation (AF) is the most common form of

cardiac arrhythmia. It follows from the chaotic operation

the upper heart (atria) and it can induce life-threatening

complications such as heart failure or stroke. In some cases

of AF, medication is ineffective and the treatment consists

in radiofrequency ablation of the endocardial tissue to ease

the cyclic electrical circulation. In case of paroxysmal AF,

Haı̈ssaguerre et al. have shown [9] that for 80 % of pa-

tients, electrical insulation of the pulmonary veins allows

the patient to regain a normal heart rhythm [10–16], but

in persistent or permanent AF, the location of pathogen ar-

eas remains difficult and is still an unsolved problem. In

this context, non-linear analysis techniques such as MMF

can be applied to identify dynamical changes that lead to

recovery.

The paper is structured as follows: the next Section in-

troduces the basics of the Microcanonical Multiscale For-

malism (MMF) and the methodologies derived from it for

proper signal processing. In Section 3 we present the anal-

ysis on atrial fibrillation data and discuss how it identifies

dynamical changes in cardiac rhythm. We also present a

reconstruction formula that naturally defines a way to sift

a Markovian fast dynamics from a slow dynamics modu-

lated by regime changes. Finally, in Section 4 we draw the

conclusions of our work.
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2. Microcanonical multiscale analysis

The Microcanonical Multiscale Formalism (MMF) is a

theoretical and methodological framework for the analysis

of multiscale signals. Its basic element of description are

the singularity exponents, which are the exponents describ-

ing the local regular/singular behavior of the signal around

each point. These are defined from the gradient-modulus

measure of the signal [17].

A detailed definition and description of the MMF can

be found in [17]. The basic definition is that given a signal

s(x), it has a singularity exponent h(x) when the follow-

ing equation holds:

TΨµ(x, r) = αΨ(x)r
h(x)+o

(

rh(x)
)

(r → 0) (1)

where TΨµ(x, r) =
∫

R
dµ(x′)Ψ ((x− x

′)/r) is the

wavelet projection of the measure µ at point x and scale

r, dµ(x) = ‖∇s‖(x) dx is the gradient-modulus mea-

sure and Ψ is a certain kernel known as mother wavelet.

3. Heartbeat analysis

The present work extends our preliminary findings in

[18]. We have analyzed measures of the cardiac potential

for six different patients in two heartbeat regimes: normal

(sinus) rhythm and atrial fibrillation. Data consists of mea-

sures obtained through three catheter electrodes inside the

heart during the radiofrequency ablation procedure, as well

as electrocardiogram measures on the skin. Each dataset

contains 21 channels (17 come from the catheters and 4

from the electrocardiogram), all of them consisting in elec-

tric potential differences sampled at 1 kHz, for a total of 1

183 232 data points.

The first step consists in verifying that eq. (1) holds

for our signals, which means that our framework is appro-

priate for calculating the singularity exponents. Then, we

define a dynamical model for heartbeat analysis by means

of these singularity exponents and, in particular, their as-

sociated Most Singular Component (MSC), i.e., the set of

points containing the most singular exponent. A key aspect

here is that most of the dynamical information of the signal

is contained only in its orientation over the MSC [19], so

that we only need to characterize well this orientation.

Firstly, we determine where the MSC is located in the

signal, that is to say, we locate where are the smallest

(most singular) exponents. From this, we define the ori-

ented MSC as a function that is zero everywhere except

for the most singular points, where it takes the value +1 or

−1 according to the sign of the gradient. If then we apply

the reconstruction formula in [20] to our oriented MSC,

the result is a reduced signal whose evolution coincides

with the original signal at short scale. At longer scales,

there appears a slow divergence between original and re-

duced signal and this fact permits to model the heartbeat

as a combination of a fast dynamics driven by the MSC

orientation and a slow-varying field that modulates it [21].

The oriented MSC δ∞(t) takes 3 values (+1 on MSC

points of positive derivative, -1 on MSC points of negative

derivative and 0 on non-MSC points) and transitions from

one point and the next are described as a Markov chain.

Let σ be the Markov states, the two-point joint probability

is expressed as:

P (σ0, στ ) = 〈P (δ∞(t) = σ0, δ∞(t+ τ) = στ )〉 (2)

and the marginal probabilities:

P (σ0) = 〈P (δ∞(t) = σ0)〉t = 〈P (σ0, στ )〉στ

(3)

Because P (στ , σ0) = P (στ |σ0)P (σ0), if the process is

Markovian then the two-step transition can be expressed as

twice the one-step transition:

P (σ2|σ0) =
∑

σ1

P (σ2|σ1)P (σ1|σ0) (4)

i.e., all the dynamic steps are described only through one

transition P (σ1|σ0). We compare the empirical P (σ2|σ0)
to the one calculated with the preceding equation and find

that they coincide. This verifies that the process is well

described as a Markovian chain.

The one-step transition is matricially expressed as the

transition matrix of the process, in our case:

T =





00 0+ 0−
+0 ++ +−
−0 −+ −−



 (5)

One important point is that T∞ results in the station-

ary distribution. This means that when T is applied on

a stationary state the result does not change, so the first

eigenvalue of the matrix is 1. The other two secondary

eigenvalues are characteristic of the dynamics.

We have calculated the Markov processes for our data

classified in four categories: internal signals under Atrial

Fibrillation (AF), internal signals under sinus rhythm,

ECG signals under AF and ECG signals under sinus

rhythm. No significant differences have been detected

from one channel to the other inside a category, meaning

that it is appropriate to group them. In Table 1 we show

the results. We see that there is a particular signature of

AF that is conserved when the signal inside the heart is

propagated to the skin. This suggests that it could be pos-

sible to finely monitor the AF evolution and severity from

external ECG measures, and transitions to and from fibril-

lation could be immediately detected.
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



.83 .09 .08

.56 .36 .08

.54 .09 .37









.81 .09 .10

.59 .34 .07

.60 .09 .31





.29, .27 .25, .21





.84 .09 .07

.71 .22 .07

.69 .07 .24









.82 .08 .10

.74 .21 .05

.73 .04 .23





.17, .13 .17, .09

Table 1. Empirical transition matrices of the oriented

MSC and their respective second and third eigenvalues

for: internal under AF (top left), external under AF (top

right), internal normal (bottom left), external normal (bot-

tom right). The dynamical parameters in internal measures

are still externally observed with minimal differences. The

estimated eigenvalues have an uncertainty around ±.04
through propagation of the sampling error.

3.1. Source field

Since the oriented MSC drives the fast dynamics, the

sign clustering determines a big part of the dynamical

structure. On a longer scale, the MSC alone does not pre-

cisely reconstruct the signal because its amplitude factor

slowly evolves. This amplitude is the source field: given a

signal s and the reduced r constructed from its oriented

MSC, the source field ρ is defined such that ∇s(x) =
ρ(x)∇r(x). Nevertheless, since the reduced signal is not

well defined outside the MSC, we need to estimate the

source field in terms of measures [21]:

µs(A) =

∫

A

dµr(x)ρ(x) (6)

This allows expressing the source field as the Radon-

Nikodym derivative of two measures, ρ(x) = dµs/dµr.

Several strategies exist to numerically evaluate Radon-

Nikodym derivatives. Since we are interested in the analy-

sis of slow transitions, we use an iterative method to fit eq.

(6) in a piecewise constant fashion. This has the advan-

tage that the source field concentrates on the description

of the dynamical borders and lets the MSC lead the fast

Markovian-stable dynamics in-between. We show the re-

sults in Figure 1, where we can see how the source field

varies infrequently and it exhibits sharp transitions at the

same time. In consonance with the MSC orientation, we

observe that the dynamical character in the case of AF is

significantly different from under sinus rhythm.

We observe a correspondence of the transition points

with the points in which the deviation between the orig-

inal and the reconstructed series is more important. So

these transition points correspond to transitions in the re-

constructibility and in the content of information, which

means that the detected transitions correspond to actual

changes in the dynamical properties of the signal. The

concrete mechanism that establishes the link of correspon-

dence with the electrophysiological transitions is nontrivial

and complex.

Figure 1. Source field and reconstruction for the V1 elec-

trode. Top panels: source field displayed (solid) over the

original signal (dashed) for the case of sinus rhythm (left

panel) and atrial fibrillation (right panel). Bottom panels:

signal reconstruction (dashed) based on the source field

and the Markov-chain modeled MSC. Signs of Atrial Fib-

rillation are noticed in the dynamical parameters. High

quality reconstruction, especially in peaks, means that we

properly characterize the signal.

4. Discussion and conclusions

In this work, we have presented the study of cardiac

fluctuations between beats under the approach of the Mi-

crocanonical Multiscale Formalism (MMF). To that ex-

tent, we geometrically characterize the resulting multiscale

structure defined around singularity points. This way, we

are able to decompose the signal into different regimes ac-

cording to their characteristic dynamics. Singularity expo-

nents directly characterize the information content of the

component. Consequently, our analysis provides direct ac-

cess to the dynamical structure at each point of the signal.

When further exploited, this analysis shows that the most

singular component (MSC) contains the information of the

entire signal and can restore it. In other words, this com-

ponent drives the dynamics of the signal.

In that sense, we found that the characteristic dynamical

parameters retrieved from MMF analysis –namely the ori-

entation of the MSC– can be dynamically described as a

Markov chain. Furthermore, these dynamic parameters (in

particular, the transition eigenvalues) under atrial fibrilla-

tion (AF) are significantly different from the sinus-rhythm

case. Additionally, they can be equally detected from in-

tracardial electrodes or from standard electrocardiogram

measures on the skin. Therefore, a possible application

would be early detection of transitions to or from the AF.

Finally, the fact that the signal is reconstructible allows

the determining of a slowly-varying source field that mod-

ulates the fast MSC Markov process. These source fields

accurately describe the multifractal dynamic changes,

what would suggests a possible relationship with transi-

tions in electrophysiological processes, such as the evolu-

tion of the cardiac regulatory mechanism and changes in

conductivity of the tissue.
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