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Abstract 

Modern QRS detectors in patient monitoring systems 

must provide accurate results even when interfering noise 

is present. This task is complicated by the heterogeneous 

and non-uniform nature of the patient population. Certain 

beat morphologies demand a significant increase in the 

complexity of beat detection algorithms. At the same 

time, it is important to take a system-wide approach to the 

beat detection problem and include artifact rejection and 

baseline correction challenges. Here we emphasize the 

importance of such an approach to be able to successfully 

handle non-trivial input data. We also explain how this 

approach can improve the QRS detection performance in 

commercial patient monitoring systems. The performance 

benchmarks are presented by being tested on proprietary 

and public ECG databases. 

 

 

1. Introduction 

This paper outlines some performance challenges 

faced by QRS detection systems in commercial patient 

monitors. The QRS detection system is a vital part of the 

patient monitoring system. It is tasked with detecting 

ventricular contractions from surface electrocardiograms 

(ECG). Such information is used by advanced functions 

of a monitor, i.e. QRS classification and arrhythmia 

detection. Thus, together with ECG pre-processing, the 

QRS detection system confronts strict performance 

requirements. Failure to correctly detect QRS complexes 

propagates further into the analysis and undermines 

performance of the system as a whole. 

Modern patient monitoring systems must operate under 

stringent performance requirements and client demands. 

On one hand patient monitors are regulated by standards 

established by AAMI [1], these standards outline 

minimum expected performance from the monitors. On 

the other hand improving computational capacity of 

embedded systems raises expectations of users in terms of 

additional features and capabilities, especially in high-end 

patient monitors.  

The patient population is also constantly changing. 

Introduction of various cardiac assist devices, pacemakers 

and implantable defibrillators into the population affects 

the expected surface ECG in patient monitors. For 

example, ventricular assist devices change both the 

morphology and the amplitude of QRS complexes as seen 

on a surface ECG. To ensure reliable performance, 

manufacturers of patient monitors must be aware of these 

new clinical methods for treatment of heart related 

diseases.  

In this paper, we discuss performance challenges faced 

by current multi-lead QRS detection systems. We 

particularly focus on QRS double-counting and false 

asystoles. Both challenges make significant contribution 

to overall satisfaction of a customer with a patient 

monitor. However, the challenges entail solving 

contradictory problems and demand additional 

algorithmic complexity in QRS detection systems. This 

paper addresses these issues in detail.  

 

 

2. QRS double-counting 

The authors use the term of QRS double-counting to 

define a QRS detection scenario when non-QRS elements 

of the surface ECG get detected as QRS complexes. One 

example is tall, abnormally strong P or T-waves that are 

counted as QRS complexes. Established methodology of 

QRS detection widely adopted by the patient monitoring 

industry [2] is vulnerable to such scenarios. In particular, 

the method utilizes non-linear techniques to transform 

and merge multi-lead ECG input to get a single signal to 

search for QRS candidates. What usually gets lost is the 

multi-lead diversity that could be used to otherwise 

improve the performance. T-waves might display 

different strength relative to QRS complexes in different 

leads. Figure 1 gives an example when T-waves are 

accentuated and exceed QRS complexes in a chest lead 

but they are relatively weak compared to QRS in a limb 

lead. Typically a patient monitor utilizes both chest and 

limb lead inputs. Therefore, it is practical to add rejection 

of tall T- and P-waves and other non-QRS morphology 

elements to the QRS detection system by exploiting 

morphological and strength differences between QRS and 

T- and P-waves in different input leads.   

The task of distinguishing tall T-waves from 

ventricular contractions by differences in their 

morphology is, however, non-trivial in a real-world 
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patient monitor. A patient monitor must detect QRS 

complexes in near-real-time [1]. Under this constraint, a 

QRS detection system cannot delay its results until it 

‘peeks’ into the future beats. A developer of a tall T-wave 

rejection algorithm should rather focus on morphological 

and temporal differences between tall T-waves and 

abnormal QRS complexes. For instance, Figure 2 gives 

an example of beat with tall T-wave and a beat followed 

by a premature ventricular contraction (PVC). On the 

figure, the PVC can be discriminated from the tall T-

wave both morphologically and by the distance from the 

preceding normal sinus QRS complex. Development of a 

tall T-wave rejection algorithm would therefore entail 

exploiting such differences that are valid over a wide 

patient population. This paper later introduces testing 

results of developing such an algorithm. 

 

Figure 1. T-waves in this example are more prominent in 

a chest lead (A) than in a limb lead (B). 

 

 
Figure 2. Tall T-wave (A) differs from PVC (B) both 

morphologically and temporarily.  

 

 

3. False asystoles 

False asystoles in patient monitors are caused in most 

cases by a surface ECG signal of insufficient strength. 

AAMI standards [1] state that a patient monitor must 

detect QRS complexes greater than 0.5mV and must not 

detect QRS complexes less than 0.15mV, with most 

commercial patient monitors using a dynamic QRS 

detection threshold between these two requirements.  

However, patient monitor users often expect the monitor 

to be able to correctly analyze signals of amplitude below 

the required AAMI standard when no noise is visibly 

present. This requirement conflicts with the fact that ECG 

monitors are designed to analyze noisy input (due to 

electric interference, motion artifacts, poor electrode 

preparation etc.) by considering only signals exceeding 

some minimum threshold to limit contribution of noise to 

the analysis.  

The only way a manufacturer of ECG monitors can 

address demands of users to analyze insufficiently strong 

surface ECGs is by dropping the minimum QRS detection 

threshold. However, this introduces new challenges due 

to the fact that previously invisible morphological 

elements become detectable under new relaxed threshold 

requirements. The following sections discuss some of 

these challenges and possible ways to address them. 

 

  

3.1. Ventricular standstill 

Ventricular standstill, or P-wave asystole, is a life-

threatening cardiac condition characterized by absence of 

ventricular electrical activity [3]. P-waves, however, 

might be present as on Figure 3. If an unsophisticated 

QRS detection system uses reduced minimum detection 

threshold, there is a high risk that P-waves will get 

detected and counted as QRS complexes due to absence 

any other periodic ECG features. As a result, a clinical 

staff will never be alerted by the patient monitor, the 

condition will be left untreated and the patient is not 

going to survive. 

 

 

Figure 3. P-wave asystole rhythm is characterized by 

stopped ventricular activity but still contains P-waves. 

 

The way to avoid such scenarios is to introduce 

additional complexity to the QRS detection system to 

detect established P-wave asystoles. Figure 3 highlights 

similarity between consecutive P-waves in their 
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morphology and also their periodicity. A straightforward 

P-wave asystole detection algorithm would analyze a 

number of consecutive QRS candidates and intervals 

between them. Once it establishes that all the candidates 

are similar between each other and resemble P-waves by 

most significant P-wave criteria and also highly periodic, 

then all such QRS candidates cannot be valid QRS 

complexes and they have to be rejected from this point 

on. In addition, one should be aware of wide but weak 

periodic QRS complexes that might resemble P-waves 

during P-wave asystole. This scenario presents additional 

challenge for a P-wave asystole rejection algorithm. 

 

 

3.2. Third-degree atrioventricular block 

Third-degree atrioventricular (AV) block (i.e. 

complete heart block) is a potentially life-threatening 

arrhythmia that can progress to ventricular standstill 

without warning [3]. Figure 4 presents an example of 

complete heart block taken from the same patient as on 

Figure 3 immediately before the ventricular standstill.  

 
 

Figure 4. Third-degree AV block is characterized by P-

waves (marked with ‘P’) contracting at their own rate 

independently from the ventricles. 

 

During complete heart block, atrial and ventricular 

activities occur at their own rates and they do not affect 

each other [3]. From the QRS detection standpoint, low 

ventricular rate of ~30 beats per minute combined with 

atrial rate at least twice as high presents a challenge for a 

QRS detection system with reduced minimum detection 

threshold. P-waves mistakenly detected as QRS 

complexes might establish themselves as a dominant beat 

type due to their prevalence in the rhythm with low-rate 

ventricular contractions. As a result, a life-threatening 

condition is not detected and an incorrect heart rate is 

given. 

Similarly to ventricular standstill, complete heart block 

demands introduction of additional morphological 

analysis into the QRS detection system. The analysis shall 

focus on morphological differences of P-waves from a 

wide range of QRS complexes. Once P-waves are 

discriminated, the third degree AV block detection 

algorithm would reject any QRS candidate that resembles 

a P-wave according to a predefined set of features. Again, 

a normal sinus rhythm with PVCs serves as a 

counterexample of what the complete heart block 

rejection algorithm must be aware of so that not to 

confuse it with the third-degree AV block.  

 

 

3.3. Artifacts and baseline wander 

An ECG patient monitoring system is required to be 

robust to noisy inputs. The main contributors of noise are 

electrical interference, motion of a subject and electrode 

preparation. While electrical interference is usually of 

high-frequency nature and can be suppressed using 

conventional filtering techniques, motion results in low-

frequency distortions of the surface ECG signal. Some 

distortions, like baseline wander can be filtered given 

tolerance to output delay. But other distortions present a 

non-trivial challenge to development of a QRS detection 

system. In Figure 5, a non-cardiac muscle contraction 

creates an artifact, that would usually be detected as a 

QRS complex due to its resemblance to a PVC. 

Recognizing such artifacts normally demands additional 

delay to analyze surrounding context of the event. Also, a 

developer faces a challenge to avoid rejection of true 

PVCs that morphologically resemble motion artifacts. 

However, advanced artifact rejection algorithms can be 

developed to assess the signal quality of each lead to 

determine which lead(s) have minimal artifact distortion 

and are suitable to be used in QRS detection. An example 

of such an approach is described in [4]. There, an 

additional feedback loop is introduced to an ECG analysis 

system that exploits multi-lead diversity to reject various 

low-frequency artifacts.  

 

 
Figure 5. A low-frequency artifact (A) introduced by 

muscle contraction.  

 

4. Results 

The authors designed an enhanced QRS detection 

system that addresses the challenges described in this 
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paper. The system includes additional measures to: a) 

prevent double-counting of tall T-waves and P-waves as 

QRS complexes, b) detect complete heart block and P-

wave asystole, and c) reject low-frequency motion 

artifacts.    

The authors emphasize the importance of using 

modern clinical data to reflect current population trends 

for this study. For this purpose, the pool of test ECGs is 

largely composed of proprietary database records which 

include data from telemetry, ICU and OR patient 

monitors. In addition, public databases were added to the 

pool [6].  Overall, the test database spans approximately 

1000 different patients and approximately 290 000 QRS 

candidates.  

Testing of the enhanced QRS detection system was 

conducted in three stages. First, the baseline QRS 

detection system that does not address any of the 

problems outlined in the paper is tested against the ECG 

database. Second, the QRS detection threshold was 

reduced to illustrate improvements in false asystole 

handling. Finally, the complete enhanced system is tested 

to reduce the number of false beats introduced by 

dropping the minimum QRS detection threshold.  

The results of the last two stages of this testing are 

presented on Table 1.  The table presents the percentage 

of false beats detected and missed beats for the last two 

stages of the testing.  

 

 Stage 2:  

Lower QRS 

Detection Threshold 

Stage 3:   

Enhanced QRS 

Detection System 

False beats 0.29 % 0.04 % 

Missed beats 0.03 % 0.03 % 

 

Table 1: Percentage of false and missed beats in the last 

two stages of the testing. 

 

Table 1 confirms that dropping the minimum detection 

threshold (Stage 2) solves the problem of missed beats 

due to false asystoles but introduces more noise to the 

system, which is reflected the increased false beat rate. 

Additional algorithms added in Stage 3 that analyze QRS 

candidates by their morphology and timing resolve the 

issue with minimum negative effect on missed QRS 

complexes.   

 

 

5. Conclusion 

This paper highlights problems that arise in 

development of QRS detection systems for patient 

monitors. Demand to reduce false asystole alarms in real-

life clinical environment by reducing minimum signal 

detection level conflicts with low tolerance to false QRS 

complexes. Such contradictory system requirements can 

only be resolved with algorithms that reject false QRS 

candidates, based on their morphology and timing. 

Additional steps to limit contribution of motion artifacts 

must also be taken. The presented enhanced QRS 

detection system addresses the challenges discussed in 

this work. The included results illustrate the effect that 

each of the solutions contributes to the overall 

performance of the QRS detection system. 
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