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Abstract

An ectopic heartbeat initiated by the ventricles is con-

sidered as Premature Ventricular Contraction (PVC) beat.

For any individual, unifocal PVCs are typically monomor-

phic, whereas multifocal PVCs have polymorph contour.

The ectopic rate especially of multimorphic PVCs is signif-

icantly associated with sudden death and many other main

arrhythmic events. In order to group PVCs upon their mor-

phology, a robust clustering method has been developed.

In this work, the already existing approach of combining

Principal Component Analysis (PCA) and Self Organizing

Map (SOM) for patient specific beat clustering is used and

optimized to deal with a variable number of leads and to

cluster PVC beats in a noisy environment. The algorithm

is tested on manually annotated multi-lead records using

three leads.

1. Introduction

PVCs have there origin in an impulse generated in the

ventricles, rather than in the sinoatrial node. They can

have large morphological variability depending on where

in ventricles the impulse is triggered. When beats origi-

nate in the same focus, all the corresponding PVCs have

similar morphology. Since PVCs are caused by a prema-

ture discharge, they lead to irregularities in heart rhythm.

The ectopic rate and morphological variability can indicate

high risk on certain heart disease especially arrhythmias

like ventricular tachycardia or fibrillation.

In the case of long term ElectroCardioGram (ECG) a

clustering in several leads is a time consuming task and

might be not manageable in the presence of many mul-

timorphic PVCs. Hence an automated analysis is an es-

sential tool for cardiologists. Since every patient has his

own morphological variability in PVCs, automatic clus-

tering needs to be patient-adaptive and needs to function

without initial learning phase.

In this paper the combination of PCA and SOM for clus-

tering beats according to Wenyu [1] is adopted and ex-

tended to the purpose of PVC multi lead clustering and

finding an optimal number of clusters. First the amount of

features for all observations (PVCs) is decreased. In de-

tail we reduce the features by the means of the discrete

wavelet transform and subsequently a PCA. Afterwards

the observations are clustered in two steps. A represen-

tative observation set is calculated via SOM first and feed

into hierarchical clustering afterwards. A stopping criteria

is based on abrupt changes in the intra cluster dissimilarity

function. In the case of several abrupt changes, every cor-

responding cluster number is a candidate for optimal clus-

tering. Using a ”sensitivity index” most promising cluster

groups are organized in an ascending order according to

their cluster number. A detailed description of the algo-

rithm is given in section 2.

Our clustering approach was tested with manually an-

notated data in different number of leads. Results can be

found in section 3. In section 4 we provide the concluding

remarks of this work.

2. Method

The input for PVC clustering is PVC beats extracted

from the raw ECG record using R-time stamps of detected

PVC beats. Every PVC beat is represented by a window

of samples in a defined set of leads. The window size is

chosen according to RR-intervals to suppress influences of

other beats in the extracted window. Prior to PVC beat

extraction the baseline wander must be eliminated.

2.1. Feature extraction

The feature extraction is performed separately for every

lead. Hence, we first describe our procedure for only one

lead and extend the model to multiple at the end of this

section. The discrete wavelet transform of level n presents

a signal in n + 1 frequency bands, [2]. Details from scale

1 to n present the high frequency part of the signal and

the related approximation n the low frequency part. The

intervals are zero padded to arrive at an interval length m, a

multiple of a sufficient big power of two. Depending on the

sampling frequency an appropriate scale-n-approximation

shows the essential morphology of PVCs. The length of

the approximation is equal to m/2n.

Afterwards PCA is performed on these approximations,

[3]. The empirical mean subtracted data space is trans-

formed linearly in a new coordinate system spanned by
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the so called principal components �i in such a way that

the greatest variance lies on the first principal component.

Thus, principal components are ordered ascendingly ac-

cording to their eigenvalues �i. The energy content is re-

flected in the associated eigenvalues. Selecting the first N
principal components as basis vectors enables dimension

reduction. A measure how well the input space is approxi-

mated by a subset of N principal components is the degree

of variation RN :

RN =

∑N

i=1
�i∑k

i=1
�i

Defining the degree of variation RN a priori leads to the

number of principal components, N , being dependent on

the distribution of variance across the bases. Finally, each

observation xj can be approximated by a finite sum of

principal components as follows:

xj
∼=

N∑

i=1

wi,j�i,

where wi,j are the weighting vectors describing xj in terms

of �i. In this work the number of components as a pro-

jection basis is chosen to fit the data with an accuracy of

97%. An accurate representation of every lead is achieved

by performing this procedure on every lead separately, be-

cause different morphological variability in different leads

is possible. The observation vector, one for each observa-

tion, covering all examined leads is built as

Wj = [w1,j,l1 , . . . , wN1,j,l1 , w1,j,l2 , . . . , wN2,j,l2 , . . .]

where lp marks the entries for the p-th lead.

2.2. Self Organizing Map

Clustering is a partition of a data set in clusters, which

members have similar properties. One method is the Koho-

nen self organizing map, [4]. It is a single layered neuronal

network that maps a high-dimensional space onto a small

number of dimensions, typically two, by placing similar

elements close together according to the natural structure

of the data. Thus the SOM gives an intuitively appealing

low-dimensional map of a multidimensional data. As the

name implies SOM structures itself and does not need an

initial supervised learning phase. The input vectors are the

observation vectors Wj obtained in the previous step. For

simplicity the lead index is skipped and the total dimen-

sion is equal to M . The centroids Ck in the input layer are

initialized linearly and each centroid is associated with an

output node Hk in the Kohonen layer. During training pro-

cess the centroids are iteratively changed according to the

topological relation in the input space. For an input pattern

Wj a Best Matching Unit (BMU) in the set of centroids is

calculated. The BMU is the element with minimal distance

to the input pattern d̃j = mink(d(Ck,Wj)). In this work

the Euclidean distance is used:

d(a, b) =

M∑

t=1

(at − bt)
2

In each step the centroids and his neighbors are updated

according to learning and neighborhood rules.

Ck = Ck + �ℎd(Ck,Wj)

Both the learning rate � and the neighborhood function ℎ
depend on moment in training and the found BMU.

The training is generally divided in two steps namely

organization and convergence phase. In the organization

phase the map is adjusted to the topology of the input space

using large neighborhood and learning rate. In the conver-

gence phase small parameters for neighborhood and train-

ing as well as a long training period are used to enable the

focus on local phenomena.

Finally each input pattern is exactly matched to one

BMU. The so obtained centroids are local averages of the

data and, therefore, less sensitive to random variations than

the original data. The size of the SOM is chosen em-

pirically and goes hand in hand with the functionality of

HES R⃝ HOLTER.

2.3. Hierarchical clustering

The number of clusters is said to be optimal, if the asso-

ciated clustering provides a grouping of the input data. In

the context of this work target groups are PVCs with same

origin in the ventricles. The optimal number of clusters is

neither known a priori nor estimated by the number of in-

put patterns easily. Using a fixed SOM size the output of

the SOM only yields a reduced representation of the input

data.

Depending on the size of the network and the structure

of the data, some nodes in the SOM may remain unoc-

cupied after the training process. The original topologi-

cal and metric relationships between target groups are pre-

served in the SOM output. This means, that the output

clustering will be not only depending on the differences

among groups, but also on the sizes of the groups, [4].

Therefore, further processing of the SOM clustering is es-

sential to achieve an adequate number of clusters. Let the

output of the SOM be a clustering with Z (Z ≤ 49) clus-

ters, then this is the input of agglomerative hierarchical

clustering which performs as follows:

1. Find the two closest cluster using some appropriate

distance measure.

2. Merge these clusters and recalculate centroids and

cluster measures.

3. Proceed with step one until only one cluster is left.

The result is a cluster structure with maximal Z possible

partitions Pr with r clusters Di (r ∈ [1 : Z]).

Pr = {D1, . . . , Dr}
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For this algorithm we used centroid linkage d(Ck, Cl) for

the between-cluster-distance measure . An overview of

common within- and between-cluster-distances used in hi-

erarchical clustering can be found in [5].

2.4. Sensitivity index

There is no conventional method for automatically esti-

mating the optimal number of clusters during hierarchical

clustering process.

Measuring the validity of clusterings and applying a

stopping criterion on the resulting measures can determine

the correct number of clusters. An useful overview for

such decision rules can be found in the work of Milligan

and Cooper [6]. Most suggested criteria are not appropri-

ate when the clusters differences are fuzzy. Hence a basic

and frequently used validity measure, the intra cluster er-

ror sum, is applied. This measure is based on the sum of

distances between centroids and each member of a cluster,

[7]. For one clustering Pr this measure is computed as:

Δr =
r∑

k=1

∑

Wi∈Dk

d(Ck,Wi)

The intra cluster error sum is a function of number of clus-

ters and increases monotonic with decreasing number of

clusters. When merging similar clusters the change of this

dissimilarity measure should not cause abrupt changes.

But the merge of well separated clusters will result in

abrupt changes, indicated by an ”elbow” [7]. Thus, a high

curvature is caused by a sharp change in homogeneity of

the merged clusters. The second derivative estimates the

maximum difference score and thus represents the way the

increase in inertia evolves. This method requires the entire

hierarchical clustering algorithm to be run.

High curvature can occur more than one time during hi-

erarchical clustering, thus more than one critical merge are

possible. It depends on the data as well as user and clinical

purpose, which elbow index and therefore which cluster-

ing is optimal. Hence, a set of maximal six most promis-

ing clusterings, obtained from the defined stopping rule,

are returned. These six clusterings are assigned to a sensi-

tivity index with a range from 1 to 6. A sensitivity index of

one shows a coarse clustering solution. Respectively an in-

dex of 6 shows a high resolution clustering. A user defined

initial display setting of the sensitivity index will result in

presentation of only one clustering on the screen.

Calculating the dissimilarity measure in every lead sep-

arate allows to trace back in which lead the change took

place.

3. Results

The test data set are sections of one hour obtained from

long term ECG records with a sampling frequency of

500Hz. A description of this dataset is given by Fischer

[8]. In the following a record of this dataset is denoted as

BSxx, where xx is a consecutive number.

The meaning of sensitivity index can be examined in the

following simple example. In BS13 there are 59 annotated

PVC beats. All PVC beats in aVR are clustered with our

suggested algorithm. The output of the SOM gives 28 clus-

ters. Three sensitivity indices are returned, namely for 2, 9
and 13 clusters. To visualize the impact of the sensitivity

index two clusters and nine clusters are shown in figure 1

and figure 2, respectively. The fuzziness of the first cluster
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Figure 1. Clustering of BS13 for sensitivity index 1

0,1 0,6

−500

0

500
µ
V

sec 0.1 0.6

−500

0

500

µ
V

sec 0,1 0,6

−500

0

500

µ
V

sec

0.1 0.6

−500

0

500

µ
V

sec 0.1 0.6

−500

0

500

µ
V

sec 0,1 0,6

−500

0

500

µ
V

sec

0,1 0,6

−500

0

500

µ
V

sec 0,1 0,6

−500

0

500

µ
V

sec 0,1 0,6

−500

0

500

µ
V

sec

Figure 2. Clustering of BS13 for sensitivity index 2

in figure 1 indicates that the cluster contains more than one

PVC type, which are resolved in the clusters of figure 2.

The algorithm was tested with all records with a signifi-

cant number of PVCs using lead II, aVR and V4. This re-

sults in 15 test data sets. A PVC clustering algorithm must

provide sufficient results in all cases without any parameter

adjustments. Two contrary examples are examined in the

following. BS01 is a record with 169 PVC. After applying

the SOM this set is reduced to 48 clusters. The hierarchi-

cal cluster algorithm provides sensitivity indices for 2, 5,

7 and 11 clusters. Visual inspections yields that a cluster-

ing with only two clusters is sufficient see figure 3. On

the other hand BS23 with 186 classified PVCs starts the

hierarchical clustering with 36 classes. Sensitivity indices

for 2, 3, 6 and 10 clusters are provided. A good cluster-

ing is obtained with 6 clusters see figure 4. The proposed
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Figure 3. Optimal clustering for BS01
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Figure 4. Optimal clustering of BS23

clustering algorithm is not always capable to assign PVCs,

which occur only once, to a correct cluster. These beats are

of minor clinical relevance, than the clustering of dominat-

ing groups. Hence, this drawback could be accepted. One

obvious disadvantage in examining the second derivative

of the dissimilarity measure is, that first and last indices of

the dissimilarity measure can not be examined. No optimal

clustering with only one element or a number of elements

equal to the output of the SOM can be returned as a optimal

clustering.

Since no reference data is available the results of some

test data sets were sent to a cardiologist and examined un-

der the aspects of homogeneity inside a cluster, separation

between clusters and the presentation of genuine clusters.

This primary investigation indicates an appropriate reso-

lution of clusterings and an excellent homogeneity inside

the clusters in most cases. Some PVC clusters seem to be

superimposed by artifacts.

4. Conclusion

We introduced a multi-lead clustering algorithm for

PVCs. Using SOM for a first clustering estimation makes

the algorithm fast and capable to deal with noisy data. The

subsequent hierarchical clustering provides a suggestion

for an optimal clustering. The primary cardiologist’s inves-

tigation is very promising. For further evaluation a study

with several cardiologists’ overview needs to be done.

One benefit of our algorithm is, that it can handle an ar-

bitrary number of leads. The selection of leads can depend

on user’s choice for example in the case of noisy leads.

One other main benefit for clinical purpose is the nested

structure of clusters obtained by hierarchical clustering.

This approach allows the user to switch among different

levels of detail on the fly or switch among the clusterings

associated with a sensitivity index.
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cal Department I, University Hospital Munich in Germany,

for their support in evaluating the clusterings obtained with

our algorithm.

References

[1] Wenyu Y, Gang L, Ling L, Qilian Y. ECG analysis based

on PCA and SOM. Neural Networks and Signal Processing

2003;1:37–40.

[2] Daubechie I. Ten Lectures on Wavelet. Rutgers University

and AT and T Bell Laboratories: SIAM, 1992.

[3] Dunteman G. Principal Component Analysis. Sage Publica-

tions, 1989.

[4] Kohonen T. The Self-Organizing Map. Proceedings of the

IEEE 1990;78(9):1464–1480.

[5] Vesanto J, Alhoniemi E. Clustering of the Self-Organizing

Map. IEEE Transactions on Neuronal Networks 2000;

11(3):586–600.

[6] Milligan G, Cooper M. An examination of procedures for

determining the number of clusters in a data set. Psychome-

trika 1985;50(2):159–179.

[7] Pircon JY, Rasson JP. The last step of a new divisive mono-

thetic clustering method: the gluing-back criterion. In Banks

D, House L, McMorris FR, Arabie P, Gaul W (eds.), Classifi-

cation, Clustering, and Data Mining Applications, volume 0.

Springer Berlin Heidelberg, 2004; 43–51.

[8] Fischer R, Sinner M, Petrovic R, Tarita E, Kääb S, Zywietz T.
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