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Abstract 

Abnormal intra-QRS potentials (AIQP) in signal-

averaged electrocardiograms have been proposed to be a 

potential noninvasive index for the diagnosis of the risk of 

ventricular arrhythmias. This study tries to develop a 

nonlinear neural network using radial basis functions 

(RBF) to approximate the normal QRS complex and then 

to estimate the AIQP using the approximation error, and 

further to quantify the estimation error of the AIQP. 

Different spread parameters of the Gaussian kernel 

function in the hidden layer have been adopted to 

evaluate the approximation accuracy of the RBF neural 

network. The study group of AIQP was constructed by 

adding a white noise with a root-mean-square value of 5 

たV into the QRS complexes of the normal subjects to 

simulate the presence of AIQP. The study results 

illustrate that the mean root-mean-square values of the 

estimated AIQP in the AIQP group were 2.5 たV, 3.5 たV, 

2.9 たV and 2.3 たV larger than those in the normal group 

using the spread parameters of 5, 10, 15 and 20, 

respectively. Hence the maximum accuracy of the 

proposed RBF neural network for the estimation of AIQP 

can reach 70% (3.5 たV compared to the ideal value of 5 

たV). 

 

1. Introduction 

Signal-averaged electrocardiograms (SAECG) have 

became an important noninvasive tool for diagnosing the 

risk of ventricular arrhythmias [1-2]. In addition to the 

analysis of the conventional ventricular late potentials, 

the abnormal signals hidden in the entire QRS complex, 

called abnormal intra-QRS potentials (AIQP), have been 

proposed to be a new potential index to improve the 

diagnostic performance of SAECG [3-8]. Several studies 

have applied a linear autoregressive moving average 

model (ARMA) in the discrete-time cosine transform 

domain to model the normal QRS components and then 

extract the AIQP by the modeling error [3-6]. Our 

previous studies further proposed the linear ARMA and 

finite-impulse-response (FIR) prediction models to detect 

the signals with sudden slope change within the QRS 

complex induced by AIQP for the diagnosis of high-risk 

patients with ventricular tachycardia [7-8]. The common 

point of the previous studies is the use of the linear model 

to estimate the smooth and predictable normal QRS 

components, and then to analyze the AIQP by the 

residuals. However the possibility that the normal QRS 

wave belongs to a nonlinear model cannot be eliminated 

from a complicated heart system. The purpose of this 

study is to develop a nonlinear model based on a radial 

basis function (RBF) neural network [9-11] to 

approximate the normal QRS components and then 

analyze the AIQP by the approximation error. 

 

2. Methods 

2.1. Data acquisition 

The high-resolution electrocardiograms were recorded 

at rest with patients in a supine position using a 

commercially available Simens-Elema Megacart® 

machine and a bipolar, orthogonal X, Y and Z lead 

system [1-2]. The input electrocardiograms were further 

digitized by an analog to digital converter with a 

sampling rate of 2 kHz and a resolution of 12 bits, and a 

10 min digitized ECG signal was stored on a computer 

hard disk for subsequent off-line analysis. According to 

the standards of SAECG analysis recommended by the 

1991 ESC, AHA and ACC Task Force and the 1996 ACC 

committee, the signal averaging technique was applied to 

reduce the effects of random noise, and a bidirectional 

Butterworth filter with 40 to 250 Hz frequency band was 

used to extract high frequency components of SAECG. 

The final noise level of SAECG was lower than 0.7 µV. 

The starting point (onset) and end point (offset) were 

obtained by using the analysis of vector magnitude [1-2]. 

Two study groups consisting of the normal and AIQP 

groups were recruited to test the performance of the 

proposed RBF neural network for the detection of AIQP. 

The normal group consisted of the X-lead SAECG of 42 

normal Taiwanese. Because all the normal subjects had a 

normal clinical history, physical examination, and 12-lead 
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ECG and echocardiogram, they had a very low possibility 

of presenting AIQP in the SAECG. The AIQP group was 

constructed by adding a white noise with a root-mean-

square value of 5 µV into the adjusted QRS complexes of 

the normal subjects in order to simulate the presence of 

the broad-band and random AIQP, and had the same root-

mean-square values of the QRS complexes in the normal 

group after adjustment.  

 

2.2. AIQP analysis using the RBF neural 

network 

An RBF neural network has an input layer, a hidden 

layer and an output layer. The transformation from the 

hidden layer to the output layer is linear. The output 

signal of the output layer is the linear combination of the 

output signals of the hidden layer. However the 

transformation from the input layer to the hidden layer is 

nonlinear. Each neuron in the hidden layer contains an 

RBF whose output is inversely proportional to the 

distance between the input of the input layer and the 

center of the RBF. Figure 1 shows a block diagram of an 

RBF neural network which has a p-dimension input 

signal in the input layer, M neurons in the hidden layer 

and only one output in the output layer. In the 

approximation analysis of the QRS wave, the target signal 

is the QRS wave, and the input signal of the input layer is 

the discrete time variable px ,,2,1 L= , where the 

dimension p depends on the length of the QRS wave. The 

optimized output signal of the output layer is applied to 

approximate the QRS wave, and the approximation error 

is defined as the difference between the target signal and 

output signal of the output layer.  

This study adopted a Gaussian RBF to be the neuron in 

the hidden layer defined as follows [11]: 
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where c denotes the center, σ  is the spread or standard 

deviation, and cx −  represents the Euclidean distance 

between x and c. Each output in the hidden layer can be 

obtained by passing the input signal in the input layer 

through the transformation of the neuron as follows:  
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where jc  denotes the center of the jth neuron. Then the 

output signal of the output layer can be derived from the 

linear combination of the outputs of the hidden layer as 

follows: 
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Figure 1. Block diagram of an RBF neural network. 

 

where jw  and jz  denote the jth neuron weight and 

output of the hidden layer, respectively. By substituting 

equation (2) with equation (3) we can further obtain 
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The matrix form of the output signal of the output layer 

can be represented as 
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or 

fWy =  (6) 

Because the target signal of the RBF neural network can 

be obtained by the summation of the approximation error 

and the output signal of the output layer, it can be 

expressed as follows: 

efWd +=  (7) 

where e  denotes the approximation error vector, [ ]T
peee )()2()1( L=e (T indicates the transport 

operation). This study adopted the minimum mean-

square-error method to find the weight vector that can 

minimize the mean-square value of the approximation 

error. The optimized weight vector *
W  can be derived as 

follows [11]:  

dfdff)(fW
+− == TT 1*  (8) 

Given the optimized weight vector, the output signal of 

the output layer can be calculated by 

)df(ffWy
+== *  (9) 

 

2.3. Definition of the AIQP parameter 

This study used the output of the RBF neural network 
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to approximate the normal QRS components and then 

adopted the approximation error to estimate the AIQP. An 

AIQP parameter for the quantification of the estimated 

AIQP was defined by the root-mean-square value of the 

approximation error as follows: 
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where σ  indicates the spread parameter of the RBF, p is 

the length of the input QRS wave, and )(* ie  denotes the 

optimized approximation error. 

 

3. Results and discussion 

The spread parameter of the Gaussian function 

determines the width of the RBF waveform. A wider RBF 

can approximate the smoother components of the QRS 

wave well, but it can not accurately approximate the 

rougher components, even if a large number of neurons is 

used. On the other hand, a narrower RBF can 

approximate the rougher components of the QRS wave 

well, but it needs a large number of neurons to 

approximate the smoother components. The conventional 

method for designing the RBF neural network used the 

least mean-square-error method to determine the width of 

the RBF, but each RBF has the same width (i.e. the same 

spread parameter) in this study. Hence the approximation 

error can be considered as the components which are 

rougher than the RBF and can not be approximated by the 

RBF. The number of neurons is another parameter which 

affects the approximation accuracy. In order that the 

approximation error can be determined as far as possible 

only by the width of the RBF and not be induced by the 

insufficient number of neurons, a large number of 

neurons that is equal to the length of the input QRS wave 

was adopted for the approximation of the wave. 

Figure 2 demonstrates the simulation signals including 

a QRS wave with the length of 106 ms from one of the 

normal subjects with a root-mean-square value of 500 µV, 

and a white noise signal with a root-mean-square value of 

5 µV for the simulation of the AIQP. Figure 3 shows the 

approximation errors using the spread parameters of 10 

(dotted line) and 20 (solid line), respectively, for the 

approximation of the normal QRS without adding AIQP. 

Obviously, the RBF neural network using the spread 

parameter of 10 can accurately approximate the QRS 

wave with only 0.04 µV approximation error. However 

the spread parameter of 20 has a larger approximation 

error of 2.29 µ V because the wider RBF cannot 

approximate the rougher components of the QRS wave 

well. Figure 4 illustrates the approximation error (solid 

line) using the spread parameter of 10 for the normal 

QRS added to the AIQP, and the waveform of the original 

AIQP (dotted line). The QRS wave added to the AIQP 

 

Figure 2. A QRS wave from one of the normal subjects 

with a root-mean-square value of 500 µV, and a white 

noise signal with a root-mean-square value of 5 µV for 

the simulation of the AIQP. 

 

 

Figure 3. The approximation errors using the spread 

parameters of 10 (dotted line) and 20 (solid line), 

respectively, for the approximation of the normal QRS 

without adding the AIQP. 

 

 

Figure 4. The approximation error (solid line) using the 

spread parameter of 10 for the approximation of the QRS 

wave added to the AIQP, and the waveform of the 

original AIQP (dotted line). 
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Table 1: Summary results of the AIQP analysis 

 Normal AIQP 

rmsQRS  537.7 ± 170.4 

)5(AIQPrms  0.1 ± 0.1 2.6 ± 0.2 

)10(AIQPrms  0.5 ± 0.2 4.0 ± 0.2 

)15(AIQPrms  1.8 ± 1.0 4.7 ± 0.5 

)20(AIQPrms  3.7 ± 2.1 6.0 ± 1.5 

rmsQRS  denotes the root-mean-square value of the QRS 

wave, and )(AIQP σrms  is the root-mean-square value of 

the estimated AIQP with regard to the spread parameter σ . 

 

was adjusted to have the same root-mean-square value as 

the normal QRS wave without adding AIQP in order to 

avoid the approximation error being dominated by the 

larger amplitude of the QRS wave. The estimated AIQP 

is 4.07 µV and has about 80% accuracy compared with 

the 5.0 µV of the original AIQP. 

Table 1 lists the summary results of the AIQP analysis 

for the normal and AIQP groups. Both study groups have 

the same root-mean-square value. The mean values of the 

AIQP parameter using the spread parameters of 5, 10, 15 

and 20 in the AIQP group were 2.5 µV, 3.5 µV, 2.9 µV 

and 2.3 µV larger than those in the normal group, 

respectively. Hence the maximum accuracy of the 

proposed RBF neural network for the estimation of AIQP 

can reach 70% (3.5 µV compared to the ideal value of 5 

µV) using the spread parameter of 10.  

 

4. Conclusions 

This study has successfully demonstrated that the 

proposed RBF neural network can be applied to 

approximate the smooth, normal QRS wave, and the 

approximation error can be used to estimate AIQP. The 

proposed RBF neural network can be considered as a 

special filter using the spread parameter of RBF to 

determine the approximation capability of the filter. The 

study results show that a smaller spread parameter would 

overestimate the AIQP and then have a smaller 

approximation error, while a larger spread parameter 

would underestimate the normal QRS and then have a 

larger approximation error. Further study is required with 

larger clinical populations to test the usefulness of the 

proposed method. 
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