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Abstract 

Many kinds of methods have been developed to classify 

QRS complex in Holter electrocardiogram. However, the 

accuracy of these methods dose not fully satisfy the 

clinical needs. In this paper, we developed an automated 

classification methods using a wavelet transform and 

two-layered Self-Organizing Map (SOM) to improve the 

accuracy. A discrete wavelet coefficient is used as a 

characteristic parameter for the heart beat and the two-

layered SOM is used for classification. First, each beat is 

divided in eight sections and the discrete wavelet 

coefficients of level 1-5 are calculated using a Haar 

mother wavelet for each section. By learning these 

characteristics in the first SOM, each section is classified 

automatically. Second, the QRS complexes are 

reconstructed as a line of the classified class in the first-

SOM and classified by the second SOM. We evaluated 

our method using MIT-BIH Arrhythmia database of 16 

cases (32,032 beats) and compared it with the accuracy 

of a standard cross correlation coefficient method. The 

classification error rate of the correlation coefficient 

method and  proposed method is 0.82% and 0.39% 

respectively. We confirmed that the accuracy of our 

method for the QRS complex analysis has significantly 

improved. 

 

1. Introduction 

The Holter electrocardiogram has spread widely to be 

able to detect transient arrhythmia and ischemia. 

However, it is very difficult for medical expert to analyze 

the ECG recording beat by beat, because of the large 

quantity of data recorded over 24 hours (over 100,000 

heart beats). Therefore, many automated classification 

algorithms have been developed [1-3]. For the feature 

extraction of QRS complex, time domain parameters 

(QRS height, width, area etc) and frequency domain 

parameter (power spectrum by FFT) have been used. For 

the classification methods, a correlation coefficient 

method, neural network, K-means algorithm and support 

vector machine have been used. However, the accuracy of 

these methods does not fully satisfy the clinical need. 

Different kinds of beats such as Normal, VPC, transient 

Right Bundle Branch Block, Left Bundle Branch Block 

and WPW beat are mixed in the same category, because 

the extraction and classification of partial abnormalities (a 

notch of R wave, S wave, delta wave etc) are insufficient 

[4].  

We have previously developed the two-layered SOM 

classification system which classified the partial 

abnormalities in the first SOM and entire QRS-T complex 

in the second SOM using time domain parameters [5-7].  

This time, we propose a wavelet coefficient which is a 

superior technique of time-frequency analysis for the 

feature extraction and apply it to the two-layered SOM 

for the classification.  

 

2. Methods 

Our QRS complex analysis system consists of a two-

layered SOM (Figure 1). 

 

 
           Figure 1. Two-layered  SOM classification  

 

2.1. Feature extraction 

A single heart beat is digitized at 128 sampling points 

which include the P, QRS and T wave. A discrete wavelet 
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to transform the extracted heart beat f(n)  is performed 

using Haar mother wavelet ψ . And wavelet coefficients 

 are calculated (1=<j=<5 : level). ),( kjW
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2.2. Two-layered SOM classification 

The extracted heart beat is divided in 8 sections 

(slices). Wavelet coefficients W of each section are 

normalized to 0-1 and used as an input vector. 

In the first SOM (slice SOM), all input vectors (all 

heart beats x 8 slices) are used for learning, and each slice 

wave is classified. The weight vector ( ) of the SOM 

is initialized to random values. The learning of SOM is 

repeated with the following steps continually. The 

Euclidean distance ( ) between weight vector and input 

vector is calculated. A unit with weight vector more 

similar to the input vector is decided as the best match 

unit C. 
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 The weights of unit C and neurons close to it in the 

SOM lattice are adjusted towards the input vector using 

the following formula. 
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 η  is the learning coefficient and  is the 

neighborhood function. The automated classification of 

slice wave was done by repeating these processes. Using 

the slice SOM classification results, QRS complexes are 

reconstructed. In the second SOM (beat SOM), heart 

beats that are expressed as a line of the slice number are 

learned and classified automatically. 

),( clh

 

3. Experiment 

3.1. Dataset 

In this experiment, we used 16 cases of MIT-BIH 

arrhythmia database which include frequent VPC, noisy 

ECG and transient abnormal beats (Right Bundle Branch 

Block, Left Bundle Branch Block, WPW) [8]. The ECG 

signal of channel 1 and five kinds of beats, Normal (N), 

VPC (V), Right Bundle Branch Block (RBBB), Left 

Bundle Branch Block (LBBB) and WPW are used in the 

experiment. We compared the results of each method 

using the error rate Er = Eb/Tb. Eb is the number of the 

classification error beats and Tb is the total number of 

beat cycle.  

                Table 1. Dataset 

No MIT Characteristics Beats 

1 106 VPC(Multi) 1,696 

2 108 Noise 1,489 

3 116 VPC+Noise 2,016 

4 119 VPC 1,661 

5 200 VPC+Noise, Run 2,168 

6 201 VPC 1,558 

7 203 VPC(Multi),VT 2,481 

8 207 LBBB+VPC 1,932 

9 210 VPC 2,204 

10 212 RBBB+Noise 2,284 

11 214 LBBB+Noise 1,877 

12 219 VPC(Multi) 1,772 

13 223 VPC(Multi) 2,198 

14 230 Transient WPW 2,858 

15 231 Transient RBBB 1,277 

16 233 VPC(Multi) 2,561 

 Total   32,032 

 

3.2. Comparison of previous methods 

We compared our method with the standard 

classification using cross correlation coefficient, single 

layer classification method with power spectrum and two 

layered SOM classification with time domain parameters. 

For the correlation coefficient method, a 0.9 threshold 

was used. For the FFT method, 24 components of power 

spectrum were used and classified in 30 categories by K-

means algorithm. For the two layered SOM with time 

domain parameter method, 6 parameters were measured 

to extract the characteristics of each section (average level, 

height, amplitude of the mountain and valley, maximum 

slope, minimum slope), learned and classified 

automatically by slice SOM and beat SOM same as the 

wavelet method. 

 

3.3. Results 

The size of SOM is 5x5 in slice SOM and 6x6 in beat 

SOM. The total Er of the standard method was 0.82%, 

FFT 1.48%, time SOM 0.55% and wavelet SOM 0.39% 

respectively (Table 2). In the case of MIT212 dataset  
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     Table2. Results of QRS classification using the cross correlation, FFT, time SOM and wavelet SOM methods. 

 

which includes partial abnormal beats (transient RBBB), 

the Er of the standard method was 4.16%. The Normal 

and RBBB beats were mixed in the same categories when 

the cross correlation coefficients were under 0.92 (Figure 

2-a). The Er of FFT method was 2.15%. The S wave 

features of RBBB were extracted a little using low 

component in the power spectrums (Figure 2-b). The Er 

of time domain SOM was 1.01%. The S wave of RBBB 

was expressed qualitatively as valley and upslope (slice 

SOM No.12 -23) in slice SOM. The small S wave of 

Normal beat was expressed as small valley and flat line 

(No. 13-24). Many of RBBB and N beats were able to be 

classified in different categories. However, 23 beats were 

mixed in the same categories because the lattice position 

in slice SOM were close (No .12-23 : 13-24). The wavelet 

SOM method improved the Er to 0.31%. Using the 

discrete wavelet transform, the S wave components of 

RBBB were expressed with wavelet coefficients of each 

level (remarkable in level 5) at the S wave position. And 

the high T wave components of RBBB were expressed at 

the T wave position in level 5 (Figure 2-d). The Normal 

and RBBB beats were distinguished with different classes 

by wavelet SOM more correctly. 

In the case of MIT-223 dataset which includes similar 

QRS shapes between N and V beats, the Er of correlation 

method was 4.00%. The FFT method provided a limited 

accuracy and the Er was 2.59%, because the differences 

of the QRS width and T wave in the frequency domain 

was not enough. In the time SOM method, the Er was 

0.73%, because the small S wave of N beat and the 

differences of T wave amplitude were detected in slice 

SOM. The wavelet SOM method provided the highest  

 

classification accuracy. The wavelet coefficients of 

normal R wave were higher than VPC in high frequency 

(level 1-2). And Normal P waves were expressed in low 

frequency (level 4-5). High T waves of VPC were 

extracted in level 5. We were able to distinguish N and 

VPC beats and improved the Er to 0.09%. 

 

4. Discussion 
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The Er improved from 0.82% to 0.39% by using new 

method. About the extraction and classification of partial 

abnormalities, the correlation coefficient method and the 

FFT method were insufficient to calculate the similarity 

and the power spectrum of entire QRS-T wave. In the 

time SOM method, the extraction of the partial 

characteristics was improved to use the slice SOM. 

However, similar characteristics such as a wide S wave 

and small s wave were not able to distinguish in the time 

domain parameters and mapped on the close lattice 

position in slice SOM. In the wavelet SOM methods, the 

characteristics of frequency of P, R and T wave were 

extracted in each level, by using the wavelet transform as 

the future extraction. And the position of the 

characteristics of each wave was able to be expressed on 

the time scale. Therefore, the extracted characteristics 

were able to be used effectively as time-frequency 

information. The classification accuracy of the partial 

abnormality was largely improved by using two-layered 

SOM methods which combined the first SOM 

classification for slice wave and the second SOM 

classification for the entire beat. 
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5. Conclusion 

We developed a QRS complex classification system 

using a wavelet transform and two-layered Self-

Organizing Map. The classification error rate improved 

with the new method, compared with the standard 

approach using the correlation coefficient method. We 

confirmed that our new method is effective for QRS 

complex analysis in Holter electrocardiogram. 
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  Figure 2. MIT212. (a): Examples of the error classification with the correlation method. The inside numbers 

between () are the cross correlation coefficient between the template ECG (left window) and each beat. (b): 

Example of power spectrum. Characteristics of S wave in RBBB are extracted by spectrum of low components.  

(c): Example of two-layered SOM classification with time domain parameters. The S wave of RBBB is extracted 

by quantitative attribute (valley and upslope) ,but the slice SOM number was close between the wide S wave of 

RBBB and the small S wave of N beat (12-23:13-24). (d): Examples of wavelet coefficients. The S wave 

components of RBBB were expressed with wavelet coefficients for each level at the S wave position. 
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