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Figure 3: Same as Fig. 2, for the Lorenz flow.
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Figure 4: Entropy RE computed at scales 1 (bottom)
to 4 (top) on fifteen 300-samples windows. Each plot
shows the Median±1.4826MAD /

√
n for young (dotted

line) and elderly subjects (dashed line). The circles denote
scales/times for which the difference between young and
elderly subjects is statistically significant (p < 0.05). The
stars mark those that remain statistically significant after
accounting for multiple comparisons.

1, for 11 at scales 2 and 3, and for 5 at scale 4. If one is
interested in assessing a statistical difference between the
two age populations at all scales/times, it is worth noting
that a total of 7 differences remain statistically significant
even after accounting for multiple comparisons using the
Holm-Bonferroni correction.

Using the conventional MSE, instead, only for 14
time/scales out of 60 the differences between the two pop-
ulations are statistically significant. None of them remains
significant after accounting for multiple comparisons.

4. Conclusions

We presented a novel rank-based entropy measure
which can be used within a multi-scale framework. Tested
on simulated time series with known properties, the novel
metric showed a higher robustness to noise when distin-
guishing the output of a logistic map from its surrogate.
On real data, the rank-based MSE outperformed the con-
ventional one in finding statistically significant differences
between young and healthy elderly subjects using 300-
samples-long RR series. These encouraging results sug-
gest the possibility of using this measure to perform a time-
varying assessment of complexity with increased accuracy
and temporal resolution.
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