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Abstract

Seismocardiography (SCG) is the measurement of vi-
brations in the sternum caused by the beating of the heart.
Precise cardiac mechanical timings that can only be ob-
tained from SCG are critically dependent on accurate
identification of fiducial points.

So far, SCG annotation has relied on concurrent ECG
measurements. We have designed an algorithm capable of
annotating SCG without the use any other concurrent mea-
surement. We subjected 18 participants to graded lower
body negative pressure. We collected ECG and SCG, ob-
tained R peaks from the former, and annotated the latter by
hand, using these identified peaks. We also annotated the
SCG automatically.

We compared the isovolumic moment timings obtained
by hand to those obtained using our algorithm. Mean ac-
curacies for increasing levels of negative pressure were
97.61 + 3.39%, 93.32 +5.33%, 78.28 +14.29%, 58.68 +
17.58%, and 63.36 + 14.23%.

We also compared LF/HF ratios obtained from isovolu-
mic moments to those obtained from R peaks. For indices
obtained from automatic annotations, the mean differences
were 0.16£0.19, —0.1010.58, 0.89£0.85, —1.22+£0.62,
and 2.30 £ 1.10 for increasing levels of negative pressure.

1. Introduction

Seismocardiography (SCG) is the measurement of tho-
racic vibrations recorded from accelerometers placed on
the sternum. Recent developments in MEMS accelerome-
ter technology have rekindled research interest in the tech-
nique [[1,/2].

Peaks observed in SCG have been related to significant
cardiac events, the main ones being aortic valve opening
(AO) and isovolumic moment (IM) during the systolic cy-
cle. The assignment of these fiducial points was based on
concurrent echocardiogram analysis with SCG morphol-
ogy [3,4]. Precise cardiac mechanical timings that can
only be obtained from SCG are critically dependent on ac-
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curate identification fiducial points [5}/6].

Heart rate variability (HRV) analysis is a practical and
widely used noninvasive technique to study the autonomic
control of the cardiovascular system [7]. The heartbeat in-
tervals (HBi) used for HRV analysis are predominantly ob-
tained from electrocardiogram (ECG) R peaks.

The modern-day ubiquity of accelerometers in wearable
devices and smart phones could make SCG an inexpen-
sive data acquisition tool. Such devices have been used to
obtain HBi [[11H13]], and the possibility of using SCG to
obtain HRV indices has been reported by us [14], and oth-
ers [13L/15]. In these studies, however, the identification
algorithms either depended on concurrent R peak identi-
fication, or did not report the accuracy of fiducial point
identification. The eventual use of SCG as a stand-alone
application without concurrent ECG or photoplethysmo-
grams, either at home or in the laboratory, depends on the
accurate and consistent automatic identification of fiducial
points with minimal user input.

The goal of this study was to develop and test SCG fidu-
cial point identification software capable of returning valid
HRYV indices, while requiring no input from the user. A
core concept for the algorithm in question was the elab-
oration of a function model for systolic vibration cycles,
as well as an optimization function capable of accurately
fitting this model to the in-vivo signal.

Accuracy of fiducial point identification differs impor-
tantly from the consistency necessary to obtain valid HRV
indices. While HRV depends on consistent beat-to-beat
identification of any one feature in systolic cycles, precise
mechanical timings depend on the accurate identification
of a particular fiducial point. To this end, our team has
been involved in the development of an algorithm capable
of correct identification of ten IM points per five minutes
of recording [16].

In order to test the software’s ability to correctly identify
SCG fiducial points in a variety of settings, it was applied
on dataset recorded from subjects who were exposed to
lower body negative pressure (LBNP). Previous work on
this dataset showed that HRV indices could be obtained
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from manually identified fiducial points.

2. Methods

2.1. Data collection and annotation

A total of 18 participants’s lower body was placed in
a negative pressure chamber. Vacuum was applied to the
chamber to drop the box pressure to -20 mm Hg, -30 mm
Hg, -40 mm Hg and -50 mm Hg progressively. The par-
ticipants were kept at each stage for 5 minutes and were
returned to normal pressure at the end of the -50 mm Hg
stage. If a participant exhibited a sudden decrease in heart
rate or blood pressure or if they expressed any discomfort
and wanted to stop, the negative pressure was immediately
terminated. The protocole has been previously described
in detail [5]]. Signals were recorded at the Aerospace Phys-
iology Laboratory under an ethics approval from the Si-
mon Fraser University Research Ethics Board. Participants
followed the informed consent procedure and signed con-
sent forms.

Since previous results indicated that IM identification is
slightly more consistent than AO identification [16], our
algorithm was tested on its ability to identify IM points.
QRS complexes of the ECG were identified [17]. On the
SCG, IM points were assigned as the local maximum fol-
lowing each R peak, and manually corrected. An algorithm
described in detail later in this paper (subsection [2.2)) was
used to identify IM points without the use of R peaks. HBi
obtained from R peaks and IM points were computed and
resampled at SHz using a shape-preserving piecewise cu-
bic interpolation method.

For all LBNP levels and participants, the time difference
between automatically obtained and hand-annotated IM
points was computed. The frequency spectrum of the fil-
tered HBi time series was computed using Welch’s method
[[L8], as well as the normalized frequency-domain HRV in-
dices.

Signal analysis was performed with Matlab 2014b
(Mathworks, MA, USA), and statistical analysis with JMP
11.2 (SAS Institute Inc, NC, USA). Values reported are
mean +95% confidence interval. Confidence interval was
computed as 1.95 times the standard error within the LBNP
level.

2.2. Identification algorithm

All SCG signals were pre-annotated using a previously
described algorithm [[16] which uses two envelopes. The
output of the algorithm returns 10-second segments of an-
notated SCG separated by gaps of at least 2 seconds.

The algorithm described below was developed to fill any
gaps and refine individual estimations (Fig. [T).

1. Beat-to-beat rejection
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Figure 1. Summary of the isovolmic moment (IM) point
identification algorithm. The input are a few very good es-
timates of IM points that come from a previously described
algorithm and [[16]. The first step rejects the set of initial
estimates in which sufficient confidence was not attained.
The second step fills the gaps between these few very good
estimates. The last step uses the estimates, which are close
to IM points, to predict the exact location of the IM points.

(a) Computation the SCG wavelet profile. This process
created a time series used to identify AO and AC cycles.
A Morlet wavelet transform of order 6 was performed on
the filtered SCG signal. The sum of the resulting time-
frequency power over time was then obtained, and the fre-
quency f, where the sum attained its maximum was com-
puted. The profile P was then computed as the mean
power for the frequencies around f,.

(b) Rejection of estimates. If successive HBi differed by
more than a threshold value T, the relevant estimate was
rejected. Estimates were also rejected if they were closer
to the immediately preceding profile peak than to the im-
mediately subsequent profile peak.

2. Gap fill. The previous processes left gaps of varying
width within the estimates. The gap filling process relied
on picking profile peaks that minimized the standard devia-
tion of the HBI time series, taking into account the sections
immediately preceding and following the gap.

3. Estimate revision. For each profile peak, a 400 ms seg-
ments of the SCG signal was centered around its maxi-
mum. The median of all such segments was computed
(Fig. ?? Top). A model was then fit to this median, de-
fined as the function
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where A normalized the maximum to 1, ¢ was time, o was
the time shift which is constrained to [—30, 30] ms and rep-
resented the point exactly between IM and AO, p was the
period which was constrained to [20, 60] ms, and each ¢;
was a compactly supported gaussian modulating the mi-
tral closure (MC), IM, AO, and post-AO peaks, as well as
a decay gaussian. The width of the gaussians was p for
i € {1,5} and p/2 for i € {2,3,4}. The gaussians were
centered at the MC, IM, AO, post-AO, and post-post-AO
peaks, respectively. The amplitudes of the gaussians were
constrained, respectively from left to right, to [0.1,0.6],
[0.3,1], [0.9,1], [0.1,1], and [0.1,1]. The amplitude con-
straints were designed from repeated observation to emu-
late normal signal morphology.

The model was fitted by a simplex search method [19], im-
plemented in Matlab as fminsearch, to minimize a custom
distance function. The result was assumed to represent a
generic systolic cycle for the participant, for the particular
LBNP level.

A model was then fitted analogously to each identified sys-
tolic cycle. This process implicitly returned timing esti-
mates for MC, IM, and AO points.

3. Results

Accuracy results are shown in Figs[2]and 3]

The HRV ratio LF/HF was computed for each level of
LBNP and all subjects. Indices obtained with IM points
were compared to those obtained from RR intervals. For
indices obtained from hand annotations, the mean differ-
ences were —0.08 £+ 0.34, —0.24 £ 0.50, —0.34 4+ 0.43,
—0.70 &+ 0.64, and —1.07 £ 0.77 for increasing levels of
LBNP. For indices obtained from automatic annotations,
the mean differences were 0.16 & 0.19, —0.10 £ 0.58,
0.89 £0.85, —1.22 4+ 0.62, and 2.30 &= 1.10 for increasing
levels of LBNP.

4. Discussion

A new algorithm for the identification of the IM fiducial
point on SCG without the use of ECG was tested in its
accuracy and consistency across levels of LBNP.

The methodology described in this study distinguishes
itself importantly from previously described algorithms by
its modelling, which was able to overcome the difficulties
created by multiple extrema in the vicinity of true fiducial
points. The modelling also allowed for concurrent estima-
tion of all systolic fiducial points, as well as a representa-
tion of participants’ general SCG morphology.

The accuracy of IM identification was tested by the com-
parison of the timings obtained automatically to timings
obtained by hand-identification. This accuracy reached
above 97 and 93% when analyzed at baseline and —20
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Figure 2. Histogram of the estimation errors of the al-
gorithm at baseline for all participants. The mean error is
0.72+£0.30 ms. Right A truncated version of the histogram
on the left highlighting the inaccuracies. The groups of er-
rors centered at ~ 50 ms represent errors wherein either
the previous or subsequent peaks were misidentified as the
isovolumic moments. The few errors near —300 ms repre-
sent diastolic cycles mistaken for systolic cycles.
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Figure 3. Mean accuracy of isovolumic moment (IM)

identification for each level of lower body negative pres-
sure (LBNP). For each subject, accuracy is computed as
the percentage of automatically annotated IM points that
are identical to hand-annotated IM points. Values are given
as mean =+ confidence interval.

mmHg of LBNP, respectively. At baseline, 17 participants
in a total of 18 had an identification accuracy of over 95%.

The consistency of the IM point identification was tested
by comparing HRV indices as obtained from R peaks to
those obtained from hand-identified IM points and au-
tomatically identified IM points. At baseline and —20
mmHg of LBNP, these indices were not statistically dif-
ferent from 0. They had small mean difference, small stan-
dard error and most importantly, 17 and 16 participants out
of a total of 18 had an accurately estimated LF-HF balance.

These levels of consistency and accuracy at baseline and
—20 mmHg indicate that the algorithm is adequate to per-
form SCG analysis without concurrent ECG at levels of
orthostatic and cardiovascular stress equivalent to 5 min-



utes of —20 mmHg of LBNP or below. Furthermore, it
was accurate enough to obtain precise continuous mechan-
ical timings that can only be obtained with SCG, as well
as consistent enough to obtain HRV indices. The results
open opportunities for stand-alone applications of SCG for
home use as well as in laboratories.
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