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Abstract

This study aimed to assess an early classification of
paroxysmal and persistent atrial fibrillation (AF) episodes
by means of the surface ECG on a heterogeneous cohort of
patients (in terms of antiarrhythmic treatment and state of
evolution of the arrhythmia), which is similar to the context
that clinicians find at tertiary centres in their daily work.

129 consecutive unselected patients suffering from an
AF episode conformed the study population (23 paroxys-
mal and 106 persistent). Modulus and phase features ex-
tracted from several time-frequency transforms of the ECG
were studied, and it was phase variations which arose as
determinant providing the best classification results us-
ing a Linear Discriminant Analysis classifier trained with
20 signals. Obtained performances for the latter feature
were: Accuracy = 83.5% (total correct classifications),
Sensitivity = 78.6% (paroxysmal AF episodes correctly
classified), Specificity = 84.2% (persistent subjects prop-
erly classified). This results would aid electrophysiolo-
gists to choose and prescribe the most suitable treatment
to lower recurrence and stop the natural progression of
the arrhythmia in general scenarios.

1. Introduction

Atrial fibrillation (AF) is the most common cardiac
arrhythmia [1] in clinical practice. It is characterized
by rapid, disorganized propagation of electrical signals
through the atria. In AF, the atria and ventricles do not
longer beat in a coordinate way, creating a fast and irregu-
lar heart rhythm.

AF patients can be classified as paroxysmal (who
present self-terminating episodes within 7 days), persistent
(recurrent episodes which are unlikely to self-terminate
and require cardioversion), and permanent (patients where
cardioversion is unsuccessful and sinus rhythm can not be
restored) [1].

So as to slow the heart rate to normal ranges, AF

can be treated with antiarrhythmic drug therapies. Non-
pharmacological treatments include surgical and catheter-
based therapies to prevent recurrence of AF in certain in-
dividuals. Nowadays, it is not possible to differentiate
the different subtypes of AF by directly observing the
ECG. Thus, there are many references in the state-of-the-
art which detect and classify AF episodes by means of
the ECG, since the Computers in Cardiology Challenge of
2004 [2] was set out. Other relevant references are [3], [4]
and [5], [6], which employ different features and analysis
for classification.

Unfortunately, there is still a lack of a classification
method able to perform well with heterogeneous cohorts of
patients treated with different pharmacological or surgical
therapies [7]. Hence, in this paper we present a study to ad-
dress this problem and find a relevant feature for AF clas-
sification. Therefore, our objective is to provide a tool that
could help electrophysiologists to choose the most suitable
therapy for each subject, depending whether he presents a
paroxysmal or a persistent AF episode.

2. Materials

129 consecutive unselected patients (23 paroxysmal and
106 persistent) suffering from an AF episode and whose
ECG was acquired in a tertiary center conformed the study
population. They included first episodes of AF, and recur-
rent AF with different pharmacological or electrical car-
dioversion treatments, which provide a heterogeneous co-
hort of patients to carry out the study. AF episodes were
defined according to the current guidelines [1, 8]. Dura-
tion of ECG segments was 5 seconds, which is a common
duration for6× 2 printout displays [9].

3. Methods

3.1. Time-frequency transforms

Although the Fourier Transform has been extensively
used for ECG signal analysis, it is not able to provide in-
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formation on the spectral content along time. This way,
time-frequency transforms overcome this drawback, since
ECG is a non-stationary signal (i.e. its frequency content
varies with time) and it is also known that AF presents
time-dependent properties [10]. Below are detailed some
of the most popular time-frequency transforms used for
biomedical signal analysis studied in this paper.

3.1.1. Wigner-Ville

The Wigner-Ville distribution introduced in [11] is de-
fined as

Wf (τ, ν) =

∫
∞

−∞

f(τ + t/2)f∗(τ − t/2)e−i2πνtdt (1)

where∗ represents the complex conjugate [12]. In order to
avoid interference between positive and negative regions
of the spectrum, the associated analytic signal

z(τ) = f(τ) + iH [f(τ)] (2)

is used, whereH [f(τ)] is the Hilbert transform of the sig-
nal f(τ). The benefits of using this transform include
that it is energy conservative, it gives good time and fre-
quency resolution, and it can be efficiently implemented
[13]. Nevertheless, unwanted cross-product terms appear
due to the non-linearity.

3.1.2. Choi-Williams

Choi and Williams proposed the use of a kernel able to
minimise cross-terms of the Wigner-Ville transform rather
than smoothing them [14]. This transform is defined as:

Cf (τ, ν) = 2
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2
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whereσ is a constant named kernel width that controls the
resolution and the cross-product terms diminution.

3.1.3. Short-Time Fourier Transform

The Short-Time Fourier Transform (STFT) of a signalf
is defined as

F (τ, ν) =

∫
∞

−∞

f(t)w∗(t− τ)e−i2πνtdt (4)

wherew is the window centered at timeτ . Thus, this trans-
form divides the signal into segments and multiplies each
one by a window. Then, Fourier transform is applied to

each segment in order to conform the time-frequency spec-
trum.

Due to the uncertainty principle, it is not possible to pro-
vide good time and frequency resolution simultaneously
using a fixed size of window. This is the main drawback of
this transform, which will be address in this study by the
use of the Stockwell transform (able to provide progressive
resolution by an frequency-adaptive size of window).

3.1.4. Stockwell Transform

The Stockwell Transform (ST) was presented in 1996
[15] to provide a tool able to combine the desirable prop-
erties of globally referenced phase with progressive reso-
lution. The ST of a signalf is defined as

(Sf)(τ, ν) = |ν|
∫

∞

−∞

g0(ν(t− τ))e−2πiνtf(t) dt, (5)

whereg0 denotes a Gaussian window. It can be seen as
a STFT where the window length varies depending on the
frequency. However, the main disadvantage of this trans-
form is related to its very high computational cost and
memory requirements. Fortunately, an efficient fast and
non-redundant implementation based on a dyadic scheme
was described in 2010 [16], which is known as as General
Fourier-family Transform (GFT). Thus, we have used this
implementation in the results presented in this study.

3.2. Feature extraction

Once baseline and powerline noise have been removed
from the ECG signals, we proceed to analyze those signals
and extract their relevant features. We applied the different
time-frequency transforms to each ECG and extracted, for
those frequencies below 16Hz, variations of modulus and
phase along the time axis.

For this purpose, we previously normalized each
time-frequency transform to the range [0-1]. If
{zf1, zf2, ..., zfN} denote the normalized values of the
transformed ECG leads for frequencyf along theN sam-
ples of the time axis, we consider

∑N−1
t=1 rt and

∑N−1
t=1 |θt|

as modulus and phase variations, respectively, for adja-
cent time samples denoted by the indext, whererteiφt =
zf t+1 − zf t.

Then, we normalized by the mean number of R peaks
which each ECG signal contains, to address the interpa-
tient heartbeat rate variability.

3.3. Classification

In this study we propose to use a Linear Discriminant
Analysis (LDA) classifier due to its low computational re-
quirements. LDAs are based on maximizing the Fisher’s
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linear discriminant (i.e. the ratio of the between-class vari-
ance to the within-class variance), so as to maximal sepa-
rability between classes is obtained.

Therefore, dimensionality is reduced by projecting fea-
ture vectors to its most discriminative directions. Fisher
discriminant finally finds the line that best separates these
vectors, guaranteeing maximal separation between classes.

4. Results

As above-said, our dataset consisted of 129 electrocar-
diograms of AF episodes. Patients corresponded to an het-
erogeneous group, who has been treated with several an-
tiarrhythmic therapies. There were 23 episodes of parox-
ysmal AF and 106 episodes of persistent AF.

As there were much more paroxysmal than persistent
patients, the leaving-one-out technique was not appropri-
ate. Therefore, the dataset was divided into two groups,
one for training the classifier, and the other one for testing.
We first trained the LDA classifier using 20 signals, and
then test was performed with the rest of the 109 patients
(14 paroxysmal and 95 persistent).

The LDA classifier was trained to maximize the global
accuracy (i.e. proportion of correctly classified patients):

ACC =
TP

TP + FP
(6)

whereTP (true positives) is the number of paroxysmal
and persistent patients correctly classified, whereasFP
is the number of paroxysmal and persistent patients erro-
neously classified.

We also provide sensitivity and specificity performances
(proportion of paroxysmal and persistent patients correctly
classified, respectively), which are defined as:

Sensitivity =
TPpa

TPpa + FPpe
(7)

Specificity =
TPpe

TPpe + FPpa
(8)

whereTPpa andTPpe are the paroxysmal and persistent
segments correctly classified, whereasFPpa are the parox-
ysmal segments which are classified as persistent, and
FPpe are the persistent segments which are erroneously
classified as paroxysmal.

Table 1 shows performances and classification results
for the test dataset (i.e. results obtained by excluding the
training signals, only taking into account the test signals)
for the different time-frequency transforms.

It can be observed that best performances are obtained
when using the phase variations obtained along the time
axis for frequencies below 16Hz, whereas results are
much worse when just the modulus variations are used
as features. Thus, the worst performances are obtained

for Wigner-Ville and Choi-Williams time-frequency trans-
forms, since they are always real-valued and not phase-
referenced.

Table 1. Classification results for the test data set with fea-
tures obtained using different time-frequency transforms.
Mod. refers to modulus,var. to variations,Both refers to
modulus and phase variations. STFT has been obtained by
using a Gaussian window of size 256 samples.

Features Acc. Sensitiv. Specific.
Wigner-
Vi lle Mod. var. 0.532 0.786 0.494

Choi-
Williams Mod. var. 0.596 0.571 0.600

STFT
Mod. var. 0.633 0.571 0.642
Phase var. 0.716 0.929 0.684
Both var. 0.716 0.929 0.684

GFT
Mod. var. 0.624 0.571 0.632
Phase var. 0.835 0.786 0.842
Both var. 0.807 0.643 0.832

Best classification percentages (around 83% in accu-
racy, with similar sensitivity and specificity measures)
are obtained when using as features the phase variations,
for the efficient and non-redundant implementation of the
Stockwell Transform (this is the GFT, figures emphasized
in Table 1). This may be due to the high significance of the
phase [17], which makes that performances drop signifi-
cantly when only modulus variations are used as features.

Therefore, AF episodes can be mostly correctly classi-
fied just using the variations of phase for the different fre-
quencies that correspond to the relevant part of the spec-
trum in AF (below 16Hz). We obtain good classification
results despite the drawbacks of the heterogeneous dataset
of patients and the unbalanced number of episodes of each
clinical AF subtype.

5. Conclusions

In this paper we have presented a study that points to
phase information of time-frequency transforms as rele-
vant feature to classify paroxysmal and persistent atrial
fibrillation episodes. A comparison between the most rele-
vant time-frequency transforms for biomedical signal pro-
cessing is presented to evince this fact, and results are pre-
sented on a cohort of patients with different treatments,
different state of progression of the arrhythmia, and sev-
eral of them with other comorbidities.
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Future work will focus on improving results and enlarge
the duration and number of signals available in the dataset,
even increasing, if possible, the heterogeneity of the sub-
jects.

Acknowledgements

This work was supported by MINECO under grants
MTM2010-15200, MTM2013-43540-P, and by Generali-
tat Valenciana under grant PrometeoII/2013/013.

References

[1] Fuster V, Rydén L, Cannom D, Crijns H, Curtis A, El-
lenbogen K, Halperin J, Heuzey JL, Kay G, Lowe J, Ols-
son S, Prystowsky E, Tamargo J, Wann S, Smith S, Ja-
cobs A, Adams C, Anderson J, Antman E, Halperin J,
Hunt S, Nishimura R, Ornato J, Page R, Riegel B, Priori
S, Blanc J, Budaj A, Camm A, Dean V, Deckers J, Despres
C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais
J, Osterspey A, Tamargo J, Zamorano J. Acc/aha/esc
2006 guidelines for the management of patients with atrial
fibrillation: a report of the american college of cardiol-
ogy/american heart association task force on practice guide-
lines and the european society of cardiology committee for
practice guidelines (writing committee to revise the 2001
guidelines for the management of patients with atrial fibril-
lation): developed in collaboration with the european heart
rhythm association and the heart rhythm society. Circula-
tion August 2006;114(7):e257–e354.

[2] Moody G. Spontaneous termination of atrial fibrillation:
A challenge from physionet and computers in cardiology.
Computers in Cardiology 2004;31:101–104.

[3] Alcaraz R, Sandberg F, Sörnmo L, Rieta J. Classification
of paroxysmal and persistent atrial fibrillation in ambula-
tory ecg recordings. IEEE Trans Biomed Eng May 2011;
58(5):1441–1449.

[4] Sandberg F, Stridh M, Sörnmo L. Frequency tracking of
atrial fibrillation using hidden markov models. IEEE Trans
Biomed Eng February 2008;55(2):502–511.

[5] Nilsson F, Stridh M, Bollmann A, Sörnmo L. Predicting
spontaneous termination of atrial fibrillation using the sur-
face ecg. Med Eng Phys October 2006;28(8):802–808.

[6] Ortigosa N, Cano O, Ayala G, Galbis A, Fernández C.
Atrial fibrillation subtypes classification using the General
Fourier-family Transform. Med Eng Phys April 2014;
36(4):554–560.

[7] Sahoo S, Lu W, Teddy S, Kim D, Feng M. Detection of
atrial fibrillation from non-episodic ecg data: a review of
methods. Conf. Proc. IEEE Eng. Med. Biol. Soc., Septem-
ber 2011; 4992–4995.

[8] Wann L, Curtis A, January C, Ellenbogen K, Lowe J, Estes
N, Ezekowitz M, Slotwiner D, Jackman W, Stevenson W,
C.M Tracy; 2011 Writing Group Members VF, Rydén L,
Cannom D, Heuzey JL, Crijns H, Lowe J, Curtis A, Olsson
S, Ellenbogen K, Prystowsky E, Halperin J, Tamargo J, Kay
G, L. Wann; 2006 Writing Committee Members AJ, Ander-
son J, Albert N, Hochman J, Buller C, Kushner F, Creager
M, Ohman E, Ettinger S, Stevenson W, Guyton R, Tark-
ington L, Halperin J, Yancy C. 2011 accf/aha/hrs focused
update on the management of patients with atrial fibrilla-
tion (updating the 2006 guideline): a report of the ameri-
can college of cardiology foundation/american heart asso-
ciation task force on practice guidelines. Circulation 2011;
123(1):104–123.
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