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Abstract

Catheter ablation is an effective therapy to treat atrial
fibrillation (AF) whenever the proper atrial regions are
targeted. Electro-anatomical mapping is commonly used
for that purpose, thus facilitating the location of ablation
targets. However, reliable mappings acquisition depends
on an accurate detection of local activation waves (LAWs)
from atrial electrograms (EGMs). This is currently a hand-
made and time-consuming task performed during the in-
tervention. In this work a novel algorithm to detect au-
tomatically LAWs is proposed. To deal with complex and
fractionated recordings, the EGM is decomposed making
use of a tailor-made wavelet function. Such a function is
generated from the atrial activation providing the highest
average correlation within the EGM. According to manual
annotations provided by two experts from 21 EGMs, the
algorithm identified 959 out of 970 available LAWs. Thus,
for the whole database its average sensitivity, positive pre-
dictivity and accuracy were 99.18% ± 1.35%, 99.69% ±
0.66% and 98.90% ± 1.51%, respectively. These results
suggest the method’s reliability, being able to detect the
LAWs and ignoring successfully non-atrial patterns, such
as noise, artifacts or other baseline oscillations, which can
often lead to false detections.

1. Introduction

Atrial Fibrillation (AF) is the most common cardiac ar-
rhythmia, characterized by a rapid and uncoordinated atrial
activation. The lifetime risk of developing AF affects
1− 2% of people in the developed world [1], increasing
even more with the age [2]. Despite some progress in the
earlier decades, the current therapy of this arrhythmia is
still far from being satisfactory [1]. Recently, catheter ab-
lation has emerged as the most effective tool to treat symp-
tomatic and drug-resistant AF patients [3]. However, a
successful application of this procedure requires an accu-
racy electro-anatomical guiding to locate those areas prone
to be ablated [4].

To this respect, combining 3D anatomical maps of the
atria with assessment of local activation waves (LAWs)
has provided to be a powerful tool [5]. This kind of maps
are normally performed by sequential point-by-point ac-
quisition of coordinates and electrograms (EGMs). How-
ever, given that AF often presents complex activation pat-
terns constantly changing on its on-going evolution [1],
manual detection of LAWs from complex and fractionated
EGMs is a challenging, very time-consuming and subjec-
tive task [6, 7]. Hence, automatic detection of LAWs has
meant a significant advance in this context. It provides a
more objetive and accuracy detection of LAWs, thus allow-
ing to obtain more reliable and real-time atrial maps [4].

To date, a variety of algorithms to detect automatically
LAWs can be found in the literature. Some of them [4, 8]
are based on the widely used approach, proposed by Bot-
teron & Smith, for the EGM preprocessing [9]. Others
however make use of a correlation between the EGM and
a mathematically constructed database of LAWs [5,10,11].
Nonetheless, all of them are still inaccurate when the EGM
becomes highly complex and fractionated [5]. Interest-
ingly, the Wavelet Transform (WT) has recently proven
to be able to deal with this kind of EGMs [12, 13]. In-
deed, Houben et al [12] improved their previous algorithm
to detect LAWs by using this transform. Moreover, they
have also proposed a novel WT-based method to detect
ventricular activation waves [13]. However, in both cases
the EGM was decomposed by only considering standard
wavelet functions, such as the first derivative of a Gaussian
waveform [12] or a quadratic spline [13]. Hence, the possi-
bility of improving the LAW detection by using a wavelet
function tailor-made for every EGM under study is here
analyzed. The initial hypothesis lying on the idea that a
waveform near the LAWs to be detected could highlight
those masked by complex and nuisance non-atrial patterns.

2. Materials

The studied database consisted of 21 10 second-length
endocardial EGMs. The recordings were obtained from
both atria making use of a Navi-Star catheter (Biosense
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Figure 1. Graphical summary of the signals obtained by the proposed algorithm in their different steps: (a) Original EGM.
(b) Signal resulting from the preprocessed EGM according to the Botteron’s approach. (c) The five LAWs identified as
potential candidates to be the MW. The finally selected LAW was marked in red. (d) Normalized signal from the first six
wavelet scales finally used to detect the LAWs.

Webster, Inc., Diamond Bar, CA) and a sampling rate of
1 kHz. Their LAWs were manually marked by two experts
blinded to the algorithm results.

3. Methods

The continuous wavelet transform (CWT) is a time-
frequency analysis to decompose a signal into different
scales. Indeed, this tool characterizes a signal x(n) in terms
of translated and dilated versions of another signal ψ(t),
named mother wavelet (MW), by computing their correla-
tion, i.e.,

CWT (a,b) =
1√
a

∫ +∞

−∞

x(t)ψ∗
(

t−b
a

)
dt, (1)

a and b being the scale and translation parameters, re-
spectively. A relevant advantage of this transform is that
the MW can be chosen from a wide variety of prede-
fined (or standard) functions to emphasize the most in-
teresting properties of the signal under study. Nonethe-
less, when these functions are unable to highlight a spe-
cific pattern within the original signal, a MW can also be
tailored [14]. Precisely, this option was here considered to

improve the LAW detection from complex and fragmented
EGMs. Thus, to extract a representative LAW pattern from
every EGM, it was firstly preprocessed according to the
Botteron’s approach [9]. Then, the EGM was bidirection-
ally filtered with a 40–250 Hz band-pass FIR filter and its
absolute value was obtained. Next, a 20 Hz low-pass bidi-
rectional FIR filtering was used and the five points with the
largest amplitude from the resulting signal were identified
as LAWs, such as Figure 1 displays. Finally, each LAW
was correlated with the whole signal, and the one provid-
ing the best average correlation was selected to act as MW.

However, in this last step the chosen waveform had to
met the mathematical criteria described by eqs. (2), (3)
and (4), where ψ̂( f ) represents the Fourier transform of
the MW and the admissibility constant Cg defines the range
of frequencies covered by each employed scale a [14].∫ +∞

−∞

|ψ(t)|2dt < ∞, (2)

ψ̂( f ) =
∫ +∞

−∞

ψ(t)e−i(2π f )tdt, (3)

Cg =
∫ +∞

0

|ψ(t)|2

f
d f < ∞. (4)
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Figure 2. Graphical comparison between the obtained
WM (solid line) and the selected LAW (dotted line) for
a typical EGM. No relevant differences can be noticed be-
tween them.

Under these constraints, the selected pattern was approx-
imated by a least squares optimization to be transformed
into an admissible MW. Nonetheless, no significant alter-
ation was observed for the obtained MW from every EGM,
such as Figure 2 shows for a typical example.

The generated MW was then used to decompose the
EGM into 16 stepwise scales. As can be observed from
Figure 3, the wavelet coefficients energy resulted narrowly
concentrated on the LAWs for every scale. Hence, al-
though all of them could be used to detect LAWs, an expo-
nentially weighted combination of the first six scales was
considered for that purpose [12]. The resulting signal was
normalized by using the original signal amplitude as a ref-
erence. Finally, an experimental threshold was set to dis-
cern between real LAWs and other complex patterns pro-
voked by artifacts. It was adaptively modified to avoid the
lack of LAWs. Thus, for every identified LAW its dis-
tance with the preceding wave was computed and, in case
of this value was higher than 350 ms, the threshold was
decreased to search for a LAW in between. Moreover, a
75 ms blanking period was also established around every
detected LAW to prevent redundant marks.

4. Results

The proposed algorithm performance was evaluated in
terms of sensitivity (Se) and positive predictive (P+).
Both metrics were defined as the ratio between the total
of LAWs correctly classified and this number extended
by false detections. Thus, whereas for Se false detec-
tions were the undetected LAWs, named as false nega-
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Figure 3. Wavelet energy distribution as a function of the
time and scale for a typical EGM interval. As can be ob-
served, the energy is narrowly concentrated on the LAWs
for every scale.

tives (FNs), for P+ they were the points incorrectly marked
as LAWs, named as false positives (FPs). The ratio be-
tween the number of LAWs correctly identified and its to-
tal, called accuracy (Acc), was also computed.

Experts identified 970 LAWs from the analyzed
database, the proposed algorithm being able to identify
properly 959. Hence, it failed 11 detections, corresponding
3 to FPs and 8 to FNs, such that global values of Se, P+ and
Acc were 99.17%, 99.69% and 98.86%, respectively. In
average for all the recordings, very similar values were also
obtained: Se = 99.18%± 1.35%, P+ = 99.69%± 0.66%
and Acc = 98.90%±1.51%.

5. Discussion and conclusions

This work has introduced for the first time a novel al-
gorithm to detect LAWs based on designing a customized
MW for every EGM under analysis. The obtained results
reported a high accuracy and a limited rate of erroneous
detections when dealing with EGMs from different atrial
areas. This behavior could be explained by the fact that
the selected MW for each recording was able to highlight
exclusively the LAWs, ignoring other non-atrial patterns.
To this respect, Figure 1 shows how the algorithm only
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emphasized the atrial activations, minimizing the remain-
ing areas among them. A proper detection of LAWs was
then easier from this signal than from the obtained by the
widely used Botteron’s approach. In fact, noise, artifacts or
other middle oscillations leading to false detections from
the Botteron’s approach were successfully avoided by the
proposed algorithm.

Nonetheless, it should be mentioned that this method
still uses the Botteron’s approach as a initial step. How-
ever, it was only used to identify a clear and limited set
of LAWs. Hence, because the main limitation for the Bot-
teron’s approach is the difficulty to discern automatically
between noise and low amplitude atrial activations [4], this
aspect does not restrict the proposed algorithm potential.

As a consequence, this algorithm could be a key
first step to develop more reliable and accurate real-time
anatomical maps, which could be helpful to improve the
catheter ablation guiding as well as the current knowledge
about AF mechanisms. Nonetheless, this pilot work must
be extended to test the method with wider databases. Only
in this way the robustness and repeatability of the obtained
results could be validated.
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