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Abstract

Recovering the 3-D LV shape from non-rotational bi-
planar x-ray angiograms is a very challenging task. The
inherently sparse and noisy data available for reconstruc-
tion and the ill-posed nature of the inverse problem ne-
cessitate the incorporation of a-priori information. To this
end, a statistical shape model of the LV anatomy is learned
from high-resolution multi-slice CT data. Reconstruction
is based on a non-rigid 2-D/3-D registration technique. To
fit pose and shape of the model to the x-ray images of the
patient, simulated projections of the model are calculated
and the difference between given and simulated projections
is minimized. The presented approach is evaluated us-
ing simulated and in-vivo angiograms. For patients where
both CT and angiograms are available, the reconstructed
LV is compared to the true shape known from CT. The de-
fined similarity metrics used for evaluation show a good
correspondence between recovered and true shapes.

1. Introduction

In coronary angiography, the gold standard for quanti-
tative left ventricle (LV) analysis is based on the evalua-
tion of endocardial contours gathered from non-rotational
2-D x-ray image sequences. End-diastolic (ED) and end-
systolic (ES) volumes are approximated from ED and ES
contours by using e.g. the Area-Length method or the
Simpson Rule method. Contour information is further uti-
lized by wall motion analysis methods like the Center-
line method or the Radial method to quantify myocardial
viability. A major drawback of the underlying imaging
modality is that 3-D information is lost due to projection.
As a consequence, volumetric diagnostic parameters, like
ejection fraction (EF), are only approximated and wall mo-
tion is only evaluated for surface areas with the bound-
ary visible in the projection image. Instead of evaluating
the LV in 2-D, novel approaches aim at reconstructing its
spatio-temporal shape to perform analysis in 3-D [1].

In classical computed tomography (CT), several hun-
dreds of projections are acquired by a fast rotating x-ray
gantry. Analytical and algebraic iterative reconstruction
techniques exploit this dense information to yield voxel
values that vary within a continuous range. However, these
techniques typically fail if only two (noisy) projections are
available. C-arm CT is a relatively young and hybrid type
of imaging modality, where the C-arm is rotated during
acquisition to increase the number of angiographic projec-
tions. Techniques known from CT can then be utilized to
address the reconstruction problem [2]. In the catheter lab,
however, the application of C-arm CT is challenged by the,
compared to conventional x-ray angiography (XA), higher
amount of x-ray dose and bolus and the, compared to CT,
slower rotational speed of the C-arm when imaging the
rapidly moving heart. Whether it will substitute XA as
a routine method in future remains to be seen [3].

Unlike classical (continuous) CT, discrete tomography
focuses on reconstruction problems where only a small
number of projections – as small as two – are available
and the object’s intensity levels are limited, i.e. discrete,
and known a-priori [4]. To solve such underdetermined
and ambiguous problems, the use of additional a-priori in-
formation is crucial since this can reduce the space of pos-
sible solutions and improve the ability to deal with noisy
projection data. In [5], post-mortem human LV casts that
have been digitized are used as a-priori information. As-
suming that ventricular cross-sections follow certain geo-
metric priors (e.g. symmetry, convexity, connectedness) is
usually too restrictive. Other approaches often do not in-
corporate anatomical a-priori information at all [6], [7].

The novelty of our approach is that anatomical a-priori
information is learned from high-resolution CT image data
and modeled as a statistical shape model (SSM). A non-
rigid 2-D/3-D registration method fits the SSM to the
angiograms. The application of SSM’s for recovering
shape from angiography has been successfully demon-
strated for hard-tissue objects [8], [9], but not yet for non-
rigid contrast-enhanced soft-tissue objects like the LV.
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2. Methods

2.1. Statistical Shape Models

To build a 3-D SSM [10], a set of segmentations of the
target shape is required. The contour of each shape Si is
described by n landmarks, i.e. points of correspondence
that match between shapes, and represented as a vector of
coordinates: xi = (x1, ..., xn, y1, ..., yn, z1, ..., zn)i

T . All
ns shape vectors form a distribution in a 3n-dimensional
space. This distribution is approximated by x = x̄ + Φb,
with x̄ = 1

ns

∑ns

i=1 xi being the mean shape vector and b
being the shape parameter vector. By varying b, new in-
stances of the shape class are generated. Φ is obtained by
performing a principle component analysis (PCA) on the
covariance matrix C = 1

ns−1
∑ns

i=1 (xi − x̄)(xi − x̄)T .
PCA yields the principle axes of this distribution; the
eigenvalues give the variances of the data in the direction
of the axes (= eigenvectors). To reduce noise and dimen-
sionality only those eigenvectors with the largest t eigen-
values are used. t denotes the number of the most signifi-
cant modes of variation and is chosen so that a fraction f
of the total variation is retained,

∑t
j=1 λj ≥ f

∑
λj .

Prior to statistical analysis, location, scale and rotational
effects must be removed from the training shapes to obtain
a compact model. Commonly, Procrustes analysis is ap-
plied to minimize D =

∑
|xi − x̄|2, the sum of squared

distances (SSD) of each shape to the mean.

2.2. Modeling of LV Anatomy

A Siemens Somatom Sensation Cardiac 64 multi-slice
CT is used to acquire 20 data sets, imaging the human
heart in 3-D at high-resolution. The volumes have an ef-
fective slice thickness of 0.5 mm and an average in-plane
resolution of 0.33 mm. The size of the image mask in the
transversal plane is 512× 512 pixels; the number of slices
varies between 220 and 310. The CT scans are performed
at 65% of the heart phase (R-R peaks) with 120 kV.

The endocardial LV surface is manually segmented by
experts in cardiology. To obtain an accurate model of the
anatomy, details like the atrial emargination, the apex and
the aortic valve region are maintained during segmenta-
tion. Contours are specified in axial slices by interactively
setting/moving control points of a cardinal spline. Due to
the high resolution of the CT scans, only each fifth slice
is segmented; intermediate contours are interpolated. The
surface of an LV is represented as a stack of contours.

Point correspondence among the training shapes is es-
tablished based on back-propagation of the landmarks on
a mean shape [11]. After segmentation, landmark extrac-
tion and removing location, scale and rotational effects, the
SSM is built as outlined in Sect. 2.1. The first three modes
of variation of the final model are illustrated in Fig. 1.
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Figure 1. First three modes of variation of the LV SSM.

2.3. Recovery of LV Shape

In discrete tomography, a common strategy for solving
the underdetermined and ambiguous reconstruction prob-
lem is to use numeric optimization [4]. Usually, as an exact
solution will not be available, the projections of the recov-
ered object need only be approximately equal to the given
projection data. In this work, a non-rigid 2-D/3-D registra-
tion approach is followed to minimize the difference be-
tween the given projections and the simulated projections
derived from the SSM. To transform the SSM from model
space to image space the following equation is used:

y = R ((x̄+ Φb) s+ T )

Both shape parameter vector b and the parameters for
pose p = {R, s, T}, i.e. rotation matrix R, scale factor
s and translation vector T , have to be found so that the
registration error is minimized. Unlike [8] and [9], we de-
rive R from Euler angles to reduce the dimensionality of
the registration problem. Orientation in 3-D space is thus
described using 3 angles, i.e. Rα,β,γ , instead of a 3 × 3
matrix. To solve the minimization problem, the Nelder-
Mead algorithm is applied. Our cost function depends on
the shape and pose parameter vector and incorporates con-
tour and densitometric information derived from the given
projections Pi and the simulated projections P ′i (b, p):

ε(b, p) =

nP∑
i=1

(ωCεC(Pi, P
′
i (b, p)) + ωDεD(Pi, P

′
i (b, p)))
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The total error ε is defined as the weighted sum of
contour-related error εC and density-related error εD over
all nP = 2 projections. εC is obtained by equiangular
sampling of the given and simulated contour and by cal-
culating the SSD for the sampled points. For εD, the sum
of squared difference metric is used. In the case of in-vivo
angiograms, the endocardial contour was segmented by ex-
perts in cardiology. Densitometric information is derived
by means of digital subtraction angiography; logarithmic
subtraction is performed due to the exponential attenua-
tion of x-rays. To reduce noise and the inhomogeneous
saturation of contrast agent, two frames before and after
a frame are used for averaging. In the case of simulated
angiograms, contour information is extracted by border de-
tection, whereas densitometric information is measured di-
rectly. A simulated projection of the SSM in image space
is obtained for a given viewing direction, shape and pose
parameter vector by converting the polygonal model into
a 3-D binary image, V , and performing ray-casting. The
values of V denote the presence/absence of contrast agent.

To generate plausible shapes [10], b is constrained by
±2
√
λi. Unlike [8] and [9], we exploit the training data to

derive constraints for p. The training instances in model
space are transformed to image space and the range of the
components of the pose vector is analyzed. Note that this
can be regarded as additional a-priori information.

Our experiments showed that optimizing pose and shape
sequentially is more efficient than optimizing both simul-
taneously. A rigid registration is performed prior to opti-
mization of the deformable parameters.

3. Results

To quantify the difference between original and recov-
ered shape, two geometric and three volumetric similarity
metrics are defined for comparing the polygonal models
and the binary image representations, respectively.

Similarity of two polygonal models S1 and S2 is mea-
sured based on a given distance metric d: simd(S1, S2) =
1
2 ( 1
n

∑n
i=1 d(pi, S2) + 1

m

∑m
j=1 d(qj , S1)), pi=1,...,n ∈

S1, qj=1,...,m ∈ S2. Distance metric dmin is defined as the
Euclidean distance between point pi and its closest point
on S2: dmin(pi, S2) = minqj∈S2 |pi − qj |. Distance met-
ric dortho denotes the Euclidean distance between pi and
the point obtained by intersecting S2 with the surface nor-
mal at pi: dortho(pi, S2) = |pi − surfn(pi) ∩ S2|.

Let |V | denote the volume of a 3-D binary image V .
Volume conformity is measured by calculating the dif-
ference of volumes (DOV): simDOV = 1 − ||Vorig| −
|Vrec||/|Vorig|. To assess shape conformity, the volume of
differences (VOD) metric is used: simV OD = 1−|Vorig⊕
Vrec|/|Vorig|. An alternative metric for shape conformity,
derived from kappa statistic, quantifies the overlap be-
tween two binary masks: simκ = 2|V1∪V2|/(|V1|+ |V2|).

Evaluation with simulated data is performed based on
leave-one-out experiments. From the segmented CT data
sets, all but one are used to learn a SSM. Simulated an-
giograms are calculated for the left-out data set, and from
these angiograms shape is recovered by fitting the learned
SSM. The recovered shape is compared with the seg-
mented shape of the left-out data set using the defined sim-
ilarity metrics. This procedure is repeated for each data set.

Table 1. Evaluation of simulated angiograms.

Sim. Metric Mean Std. Min. Max.
dmin (mm) 2.61 0.65 1.65 3.53
dortho (mm) 2.49 0.77 1.38 3.72
DOV (%) 94.56 3.55 87.35 98.73
VOD (%) 78.17 5.30 68.88 84.91
κ (%) 87.12 2.53 82.54 90.18

The DOV metric in Tab. 1 shows that the original vol-
ume is approximated at high accuracy. This is essential
for assessing volume-based diagnostic parameters, like EF.
Concerning shape conformity we can see that a high over-
lap between the two shapes is achieved, although the V OD
is still improvable. The distance metrics dmin and dortho
are near the mean reconstruction error of 2.3 mm [11].

Evaluation of in-vivo angiograms is performed as fol-
lows: 1) a SSM is learned from 19 data sets, with the CT
data set corresponding to the angiogram being excluded,
2) the model is fit to the in-vivo angiograms, and 3) the re-
covered shape is compared with the true 3-D shape of the
excluded CT data set using the defined similarity metrics.
The angiograms are acquired using a Siemens Bicor and a
Siemens AXIOM Artis dBC system, capturing images of
512× 512 pixels and 8-bit gray level depth at a frame-rate
of 25fps. For temporal registration with CT data, the ECG
information accompanying the angiograms is utilized.

Table 2. Evaluation of three in-vivo angiograms.

Sim. Metric #1 #2 #3 Mean Std.
dmin (mm) 2.43 2.32 2.95 2.57 0.34
dortho (mm) 2.36 2.05 3.36 2.59 0.68
DOV (%) 98.01 92.87 82.11 91.00 8.11
VOD (%) 74.72 80.13 68.12 74.32 6.01
κ (%) 87.49 90.41 79.75 85.88 5.51

The results for three in-vivo angiograms are given in
Tab. 2. Our experiments indicate that values similar to the
evaluation with simulated data are achieved, although the
number of data sets is relatively small. For example #3, the
reconstruction yields suboptimal results. The best shape
conformity is achieved for example #2.

103



Finally, Fig. 2 shows one reconstruction result of the
leave-one-out experiments.

Figure 2. Reconstruction example showing original shape
(bright) and recovered shape (dark).

4. Discussion and Conclusion

A new method for recovering the LV from non-
rotational bi-planar x-ray images is presented. The nov-
elty of our approach is that anatomical a-priori information
about the LV is learned from high-resolution CT data and
modeled as SSM. Reconstruction is based on a non-rigid
2-D/3-D registration technique which fits the SSM to the
angiographic projections.

When only two (noisy) projections are available, the
reconstruction problem usually becomes underdetermined
and ambiguous. In such cases, the incorporation of a-priori
information plays a crucial role, since this helps in limit-
ing the space of possible solutions and often improves the
ability to deal with noisy data.

Using a SSM for reconstruction allows to generate sta-
tistically plausible and patient specific shapes. In contrast
to other LV SSM’s often found in literature, anatomical ar-
eas like the atrial concavity, the aortic valve region and the
apex are preserved in our model. This is necessary to gen-
erate complete contour and densitometric information dur-
ing registration. Further note that these areas overlap with
the ventricular cavity in projection images and are there-
fore hard to recover without prior knowledge.

Evaluation with both simulated and real patient data
shows promising results. The LV volume is recovered at
high accuracy. This is important for assessing volumetric
diagnosis parameters, like EF. Concerning shape confor-
mity, the overlap between original and recovered volume
is high, though there is still place for minor improvements.

Future work will focus on evaluating our approach with
more in-vivo angiograms and on improving the non-rigid
2-D/3-D registration.

Acknowledgements

We want to thank the medical staff from the Central In-
stitute of Radiology at the General Hospital of Linz, espe-

cially the head of department, namely PD Dr. Franz Fell-
ner, and Johannes Krieger, for providing the images and
for the valuable discussions.

References

[1] Swoboda R, Carpella M, Backfrieder W, Steinwender C,
Gabriel C, Leisch F. From 2d to 4d in quantitative left ven-
tricle wall motion analysis of biplanar x-ray angiograms.
In Computers in Cardiology 2005. IEEE Computer Society
Press, 2005; 977–980.

[2] Prummer M, Hornegger J, Lauritsch G, Wigstrom L,
Girard-Hughes E, Fahrig R. Cardiac c-arm ct: A unified
framework for motion estimation and dynamic ct. IEEE
Transactions on Medical Imaging 2009;28:1836–1849.

[3] Rieber J, Rohkohl C, Lauritsch G, Rittger H, Meissner O.
Application of c-arm computed tomography in cardiology.
Der Radiologe 2009;49:862–867.

[4] Herman GT, Kuba A. Discrete tomography in medical
imaging. Proceedings of the IEEE 2003;91:1612–1626.

[5] Prause GPM, Onnasch DGW. Binary reconstruction of
the heart chambers from biplane angiographic image se-
quences. IEEE Transactions on Medical Imaging 1996;
15:532–546.

[6] Medina R, Garreau M, Toro J, Breton H, Coatrieux JL, Jugo
D. Markov random field modeling for three-dimensional
reconstruction of the left ventricle in cardiac angiography.
IEEE Transactions on Medical Imaging 2006;25:1087–
1100.

[7] Moriyama M, Sato Y, Naito H, Hanayama M, Ueguchi
T, Harada T, Yoshimoto F, Tamura S. Reconstruction of
time-varying 3-d left-ventricular shape from multiview x-
ray cineangiocardiograms. IEEE Transactions on Medical
Imaging 2002;21:773–785.

[8] Lamecker H, Wenckebach TH, Hege HC. Atlas-based 3d-
shape reconstruction from x-ray images. In ICPR ’06: Pro-
ceedings of the 18th International Conference on Pattern
Recognition. IEEE Computer Society, 2006; 371–374.

[9] Benameur S, Mignotte M, Parent S, Labelle H, Skalli W,
de Guise J. 3d/2d registration and segmentation of scoliotic
vertebrae using statistical models. Computerized Medical
Imaging and Graphics 2003;27:321–337.

[10] Cootes TF, Taylor CJ. Statistical models of appearance for
computer vision. Technical report, Imaging Science and
Biomedical Engineering, University of Manchester, 2004.

[11] Swoboda R, Scharinger J. A 3-d statistical shape model of
the left ventricle - geometric prior information for recover-
ing shape from projective bi-planar x-ray images. In Chal-
lenges in Biosciences: Image Analysis and Pattern Recog-
nition Aspects. books@ocg.at, 2008; 53–62.

Address for correspondence:

Roland Swoboda
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