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Abstract 

Respiration is an important physiological signal for the 

monitoring and diagnosis of different conditions. 

However, a respiratory sensor is rarely included in 

ambulatory systems. Hence, several studies have focused 

on the computation of the so-called ECG-derived 

respiration (EDR). This research evaluates four different 

EDR algorithms on ECG signals that contain non-

stationarities and noise. Two of these algorithms are based 

on the amplitude of the R-peak, and two are based on 

principal component analysis. To evaluate how well each 

of these algorithms estimates the respiration, three 

physionet datasets were used, and correlation, coherence, 

and a measure of cardiorespiratory coupling were used as 

indices for this evaluation. It was found that the simplest 

algorithm, namely the R-peak amplitude, was less sensitive 

to noise. In addition, no significant differences were found 

between the cardiorespiratory coupling derived with this 

easy-to-compute EDR and the real respiratory signal. This 

is great news for ambulatory applications, since the 

simplest algorithm can accurately estimate respiratory 

information. 

1. Introduction

Respiration plays an essential role in the diagnosis and 

monitoring of different conditions, such as stress and sleep 

disorders. However, its recording is often associated with 

invasive and intrusive sensors such as respiratory belts and 

thermistors. Despite the fact that these sensors are 

regularly used in a hospital setting and are unavoidable in 

different medical tests, it is very rare to find them in 

ambulatory systems. In fact, several monitoring systems 

avoid using these sensors, not only because of their 

interference with the natural breathing, but also because of 

the costs associated with their use. For these reasons, 

several studies have focused on the derivation of 

respiratory information from the single-lead ECG signal. 

Some algorithms have been proposed to derive respiratory 

rates from the tachogram [1], and others have shown that 

an approximation of the respiratory signal can be obtained 

from amplitude changes of the ECG [2,3]. This 

approximated signal is called the ECG-derived respiration 

(EDR), and its computation is possible due to the 

mechanical interaction between the respiratory movements 

and the morphology of the ECG. More specifically, during 

each breathing cycle, the electrical impedance of the thorax 

and the relative position of the electrodes with respect to 

the heart, change due to variations of the amount of air in 

the lungs. Consequently, these variations can be detected 

from the changes in the amplitude of the different waves 

of the ECG. In this context, this research aims to evaluate 

different existing EDR algorithms on ECG signals that 

contain noise and non-stationarities, which are typical in 

signals from ambulatory systems. The latter differentiates 

this study from others in the literature, for instance in [4] a 

respiratory pattern was imposed and patients were in a 

semi-supine position during the whole experiment, and in 

[5] only stationary segments were used. Here, all dynamics 

are taken into account, and an ambulatory dataset is 

included. This is important since many studies are 

currently focusing on maximizing the amount of 

information extracted from an ambulatory ECG, and these 

findings will help deciding which method to use to extract 

respiratory information. 

2. Methodology

2.1. Data 

In order to evaluate the different EDR algorithms three 

publicly available Physionet datasets were used. The first 

one corresponds to the Fantasia database [6], which 

consists of simultaneous recordings of ECG and 

respiration. Single-lead ECG (lead II) and respiratory 

signals were recorded from 20 young (age between 21 and 

34 years), and 20 elderly (age between 68 and 85 years) 

healthy subjects. The respiratory signals were measured 

using a respiratory belt around the thorax. All subjects 

were in supine position while watching the movie Fantasia 

(Disney, 1940), and the signals were recorded for about 

120 minutes with a sampling frequency of 250Hz.  

The second dataset is the Apnea-ECG database [7] that 
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contains 70 single-lead ECG signals (lead II), of which 8 

are accompanied by three concomitant respiratory signals. 

Two of the latter correspond to the respiratory effort 

measured using respiratory belts around the abdomen and 

thorax, and one corresponds to the oronasal airflow 

recorded using a nasal thermistor. All the ECG and 

respiratory signals were sampled at 100Hz and their length 

range between 7h and 10h.  

The last dataset used in this study is the “Stress 

Recognition in Automobile Drivers” database [8]. This set 

contains single-lead ECG (lead II) and respiratory signals 

amongst others, which were recorded from healthy 

volunteers while they were driving a car around Boston, 

Massachusetts. Respiratory signals were recorded using a 

respiratory belt around the thorax and were sampled at 

31Hz, while the ECG was sampled at 496Hz. 

2.2. ECG-processing 

All ECG signals were segmented into epochs of 60s, 

and in total, 1210, 4772, and 3950 segments were collected 

for the drivers, fantasia and apnea datasets, respectively. 

Next, the segments were normalized to zero mean and unit 

variance, and the contamination level proposed in [9] was 

calculated for each ECG segment. After that, the R-peak 

positions were detected using the modified Pan-Tompkins 

algorithm proposed in [9], and baseline filtering was 

implemented using two median filters [3]. One filter of 

200ms was first applied to remove the QRS complexes and 

P-waves. On this filtered signal the second median filter of 

600ms was applied to remove the T-waves. The resultant 

baseline signal was then subtracted from the ECG. Finally, 

four different amplitude-based algorithms were used to 

derive the respiration from the ECG. 

2.3. ECG-derived respiration 

It is well-known that respiratory movements change the 

position of the electrodes with respect to the heart vector, 

and that changes in the thoracic electrical impedance are 

closely related with changes in the volume of air contained 

in the lungs [1]. These two effects clearly affect the 

morphology of the ECG, in the way that the amplitude of 

its characteristic waves changes with each breathing cycle. 

Moreover, these mechanical effects are more pronounced 

in the standard lead II, and this is why this and other studies 

in the literature focus on analyzing this single-lead ECG 

signal. Additionally, it is also well-known that lead II is 

one of the most informative leads for medical diagnosis 

[1], hence, it is widely used in ambulatory systems. Here, 

four different methodologies to derive the respiratory 

information from the morphology changes in the ECG 

were implemented, and they will be described below.  

a) R-peak amplitude [2]: This methodology takes the

amplitudes of the R-peaks on the baseline-corrected ECG 

segments. This EDR signal will be denoted by Rr. 

b) R-peak amplitude w.r.t. the S-wave [4]: This EDR (Rrs)

was calculated as Rrs(i)=Rr(i)-Samp(i), i=1,…,N, where N is 

the amount of heart beats per segment, and Samp 

corresponds to the amplitude of the foot of the S-wave, 

which is computed as the minimum amplitude in a window 

of 80ms after the R-peak.  

c) Principal component analysis [4]: This methodology

takes into account not only the variations in the amplitude 

of the R-peak, but also the linear changes of the 

morphology of the QRS complex due to respiration. First, 

all QRSs are segmented using a symmetric window of 

120ms around the R-peaks. Next, all windows are aligned 

with respect to the R-peaks and a matrix X is generated. 

Finally, a mean variation of all the points in X is obtained 

by means of principal component analysis (PCA). The first 

principal component is then used as the EDR signal, 

denoted by Rl. 

d) Kernel principal component analysis [5]: Here, both

linear and non-linear interactions between respiration and 

the morphology of the QRS complex are taken into 

account. The matrix X contained in the input space is first 

mapped to a higher dimensional space using a kernel 

function. Then, principal component analysis is applied to 

this new transformed dataset, and the first principal 

component is related to the EDR signal. However, this 

component needs to be mapped back to the input space 

before it can be used as the fourth EDR, denoted by Rk. 

Details on this computation can be found in [5]. 

2.4. Comparison 

In order to evaluate the different EDR algorithms, the 

respiratory effort recorded using a respiratory belt around 

the thorax (RTH) was used as a reference signal, and the 

following procedure was implemented: 

1) All reference signals were segmented into epochs of 1

minute. 

2) Both real and estimated respiratory signals were

resampled at 5 Hz using cubic spline interpolation. 

3) In order to evaluate the resemblance of the different

EDRs to RTH, the correlation coefficient and the mean 

magnitude squared coherence (MSC) were computed 

between each pair of signals. The correlation coefficient 

was determined as the maximum value of cross correlation 

over 10 lags [5], and the MSC was computed as 

𝐶𝑥𝑦 =
|𝑃𝑥𝑦(𝑓)|

2

𝑃𝑥𝑥(𝑓)𝑃𝑦𝑦(𝑓)
,          (1) 

where Pxx(f) and Pyy(f) are the power spectral densities 

(PSD) of the signals x and y respectively, and Pxy(f) is the 

cross-power spectral density of x and y. The PSD was 

computed using Welch's algorithm, with a 1024 point fast  

Fourier transform (FFT), and a Hamming window of 30s 

with an overlap of 50%.    
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Figure 1. Computation of the mean magnitude squared 

coherence (MSC). (left) PSD of the real respiratory signal. 

The shaded area indicates the frequency range between the 

half-peak amplitude values of the fundamental respiratory 

frequency. (right) Coherence between the respiration and 

the EDR signal. The mean value of the coherence Cxy(f) 

inside the shaded area is used for the comparison. a.u. 

stands for arbitrary units. 

For the computation of the mean MSC it is important to 

consider only information about the respiration. Therefore, 

the frequency band is defined around the fundamental 

frequency of the real respiratory signal, and the cut-off 

frequencies correspond to the half-peak amplitude values. 

This is illustrated in Figure 1. 

In addition to the correlation coefficient and the mean 

MSC, a measure of cardiorespiratory interactions was 

computed between the real respiration and the RR interval 

time series. This measure is calculated using bivariate 

phase rectified signal averaging (PRSA) proposed in [10]. 

At this point, the tachogram is computed and then 

resampled at 5 Hz. Then, the increasing points in the 

respiration (i.e. inspiration) are used as anchor points, and 

the quasi-periodicities of the heart rate preceding those 

anchor points are calculated, see [10] for details on the 

computation. For this example, the slope connecting the 

anchor point and the points immediately before and after 

in the average curve is measured. This slope indicates how 

fast the heart rate reacts to increasing points in the 

respiration. In other words, it can be used as an indication 

of cardiorespiratory coupling. The goal here is to 

determine whether the use of an EDR signal can result on 

different estimations of cardiorespiratory interactions. 

3. Results and discussion

For the first part of the analysis, all segments of the 

datasets were used for the comparison between the 

different techniques. The results of this comparison are 

presented in Figure 2(top), where the correlation 

coefficients and mean MSC between each EDR signal and 

the real respiration RTH are indicated.  Note that the values 

of correlation and mean MSC are not different between the 

EDR signals, when all segments, (non-)stationary, clean 

and contaminated by artefacts, are taken into account. In 

the second part of the analysis, the contamination levels 

were computed for all segments, and a threshold of 0.9 was 

then applied to split the data into two groups, one with 

clean and one with “contaminated” segments. This was 

done in order to determine how the different algorithms 

performed in the presence of noise or transients in the 

signals. As can be seen in Figure 2(bottom), there are 

differences in the correlation and mean MSC between the 

EDR signals obtained with PCA and kPCA, and the real 

respiration. Moreover, it is clear that both methods based 

on the R-peak amplitude appear to be slightly less sensitive 

to noise when looking at the values of mean MSC. This is 

not a surprise, since it is well known that the performance 

of PCA is significantly compromised in the presence of 

noise. Therefore, these findings can be considered in real 

life applications, where transients, artifacts, changes in 

baseline, and noise contaminate the ECG signals. 

For the last comparison, the measure of 

cardiorespiratory coupling obtained by means of PRSA 

was used. Figure 3 shows this measure calculated from 

different respiratory signals, real and estimated. Note that 

the values obtained using either signal are very similar, 

which indicates that it is enough to use the simplest EDR 

algorithm to get information about cardiorespiratory 

interactions. In addition, the strongest coupling can be 

observed in the Fantasia dataset, where the subjects were 

at rest and the strong effect of respiration is more 

pronounced in all segments of the dataset. In the drivers 

dataset on the other hand, patients were driving, and 

baseline and different dynamics typical of ambulatory 

systems, were observed. This can be seen in the lower 

values of this cardiorespiratory measure. Finally, the 

coupling between respiration and heart rate is affected 

during episodes of apnea, which is related to the lower 

values of BPRSA for the apnea dataset. With this, it is clear 

that this type of parameters can be easily computed using 

the simplest EDRs, namely Rr or Rrs. 

4. Conclusion

The findings presented in this study can be considered 

in real life applications, where transients, artifacts, changes 

in baseline, and noise contaminate the ECG. In addition, 

the simplest method to extract respiratory information 

from the ECG offers reliable and robust performance, 

when compared to methods based on PCA. However, some 

complex interactions between respiratory movements and 

the morphology of the ECG might be missing with this 

simple algorithm. 
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