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Abstract 

Recently presented new QRS detection algorithm uses 
a detection function based on the value of angle between 
two regression segments adjacent in a given point. The 
optimization of these segments, representing long-term 
and short-term acceleration of heart activity, is presented 
in this paper. 

The detection algorithm is based on four simple steps: 
(a) iterative linear regression based on samples selected 
in two windows of different length ΔtL and ΔtM (b) 
calculation of series of angle values between regression 
segments adjacent to each point, (3) expressing the 
synchronicity in both series as a detection function and 
(4) adaptive thresholding of the detection function. 

The method was tested with original records from 
MITDB for different combinations of thresholding 
parameters and for ΔtL and ΔtM varying in ranges of 41.7-
75 ms and 8.3-41.7 ms respectively. The quality of the 
detection was measured with false detection rates and 
represented by the area under the ROC curve. For the 
normal ECG, the values yielding the highest area of ROC 
for sensitivity and positive predictive value of QRS 
detection are respectively: ΔtL = 58.3 ms and ΔtM = 
19.5 ms.  

1. Introduction

Although automatic detection of the heart beats has 
been investigated since the beginning of digital 
electrocardiography, current challenges consist in making 
it independent on signal quality. Unsupervised 
acquisitions are often made in home care conditions and 
interpretive applications require robust algorithms 
performing well independently on missing data, local 
distortions or uneven lead connection.  

The analysis of the electrical activity of the heart and 
in particular the heart beats detection is based on time 
series of surface-recorded voltage. The ECG is then 
processed as a regular digital signal, where, in the 

absence of other requisites all samples are uniformly 
spaced and their values are equally accurate and reliable. 
This tacit assumption also justifies the common yet 
unwitting usage of filtering techniques in heartbeat 
detectors [1-3]. Some rare proposals consider 
representing the heart activity as temporal patterns of 
voltage instead of as time series [4-6]. Although the 
patterns are also uniform series of discretized voltage, the 
pattern matching process allows for certain dissimilarity 
of values (e.g. caused by a single outlying value) or for 
asynchronicity of samples. This approach integrates the 
local activity represented in a cloud of samples thus is 
favorable in case of distorted measurements (e.g. home 
care or stress-test ECG recordings) or intentional non-
uniform sampling.   

To this end we proposed very recently a new detection 
algorithm that uses a detection function calculated on the 
value of angle between two regression segments adjacent 
in a randomly selected point [7]. The algorithm is based 
on four simple steps:  

1. iterative linear regression based on samples
selected in two windows of different length ΔtL 
and ΔtM,  

2. calculation of series of angle values between
regression segments adjacent to each point, 

3. expressing the synchronicity in both series as a
detection function and 

4. adaptive thresholding of the detection function.
The algorithm uses two arbitrary selected time 

intervals around each given point in which the detection 
function is calculated. Optimization of these segments, 
representing long-term and short-term acceleration of 
heart activity, is presented in this paper. 

2. Materials and methods

2.1. Background of detecting method 

The proposed heart beat detector was based on two 
following assumptions:  
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1. the QRS complex is a coordinated electrical 
activity of prevalence of muscular fibers that 
manifests itself by a remarkable and consistent 
wave when projected to a segment in space 
corresponding to particular lead, 

2. the QRS complex differs from other waves by 
sudden acceleration of electrical field resulting 
from steep surface enlargement of the 
depolarization front.  

Consequently, the simultaneous occurrence of long-
term and short-term activities are representative for a 
QRS, and these activities are to be detected from 
electrical measurements. A simple pattern of the local 
electrical activity proposed in [7] but also studied in [8] 
and [9] is an isosceles triangle with the top fit to the QRS 
peak and base aligned to the ECG’s baseline. The angle 
measured at the triangle top changes from ca. 180 degrees 
for signal sections of low acceleration and deceleration 
(e.g. ECG baseline) to very small values for steep signal 
changes (as in the vicinity of the QRS). It gives a 
quantitative estimate of changes of signal trend that can 
be used for detection of QRS if the length of the triangle’s 
sides is properly selected.  

The selection of these sections length also has a 
practical consequence. Calculation of a single side of 
approximating triangle requires considering of at least 
two signal samples. Including more samples makes the 
method more robust to accidental outlying values.   

As first approach we assume that detection of 
coordinated activity needs a triangle base length to be 
comparable with the total QRS duration, while detection 
of the sudden change corresponding to R peak needs a 
triangle base length to be comparable with shortest QR or 
RS section. Therefore initial values of these two sections 
were set intuitively as 75 ms and 41 ms respectively and 
their optimal values were studied throughout this paper. 
The optimal values are expected to meet the following 
detection criteria:  

 yield a reliable detection peak unique per heart 
beat disregarding the beat morphology, 

 separate two adjacent beats in fastest possible 
rhythm and tachycardia 

 provide a fast response (i.e. values of detection 
function are not delayed with regard to the actual 
ECG signal),  

 provide unaltered detection function in case of 
variable sampling of the source ECG. 

 
2.2. Detecting scheme 

The details of proposed detection algorithm was 
presented in [7] and will be briefly recalled here. The 
algorithm performs in two stages: calculation of the 
detection function and thresholding it for indicate the 
most probable location of R peaks. While the first stage is 

expected to provide distinct values for QRS and non-QRS 
events, the second has to indicate the time points of QRS 
occurrence in a reliable and repetitive way. The first stage 
performs in the following steps (fig. 1):  

Calculation of triangle ascending and descending 
slopes at a given time point based on ECG signal samples 
in its surrounding. Two series of slopes are calculated for 
each point: long term marked with L and short term 
marked with M. The slope coefficients, respectively 
mL−(t), mL+(t), mM−(t) and mM+(t) are calculated by a linear 
regression fitting the y = m·t + b line to the subset of 
signal values preceding and to the subset of signal values 
following the given time point t.  
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಻
ೕసభ

∑ ௄ೕ∙ሺ௧ೕି௧ሻ
಻
ೕసభ

 

where J is the total number of samples in the window 
and j is the current sample number relative to the window 
onset. The subset of samples taken into account for 
consecutive values of t may overlap or may be disjoint, 
thus the train of regression values can be calculated as 
frequently as necessary, making the detection function 
independent on the ECG signal.  

 

 
 

Fig. 1. Calculation of detection function 
 

Calculation of the angle between the ascending and 
descending slope as the parameter representing the 
impulse-like activity approximated by the triangle. Two 
angle values TL(t) and TM(t) are calculated at each time 
point for two respective surroundings of the time point t.  
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To emphasize the simultaneity of the long- and short 
term activity we multiply the angle values at 
corresponding time points t. In case of a multichannel 
record, activities from several channels are also combined 
at this step.   

 ሻݐሺ݌ ൌ ඥ∑ ሺ ௅ܶ௖ሺݐሻ ∙ ெܶ௖ሺݐሻሻଶே
௖ୀଵ  

where N is the total number of channels and c is the 
current channel number. 

At the second stage, the detector determines the 
occurrence of heartbeats by detection of upward crossing 
of a specific threshold by the detection function 
determined at first stage. The value of threshold is 
initialized based on first two second of detection function 
and then adapted to its variability in specified adaptation 
sections. New threshold is calculated as:  

ሻݐሺܪ  ൌ∝∙ ݐሺܪ െ ܰሻ ൅ ሺ1െ∝ሻ ∙  ሺܰሻ  (4)ܣ

where adaptation inertia α = 0.9, N is the number of 
detection function samples in the section d and ܣሺܰሻ ൌ
ଵ

ே
ሺ∑ሺ݊௢ ൌ :ሻݐሺ݌ ݊௢ ൐ ሻܪ െ	∑ሺ݊௨ ൌ :ሻݐሺ݌ ݊௨ ൑  .ሻሻܪ

The duration d of the adaptation section and thus the 
regulation responsiveness is adjusted to reach a 
compromise between required reaction time and 
suppression of overshoots. 

 
2.3. Optimizing detection parameters 

The detector scheme has four adjustment parameters: 
the lengths of long- and short time slopes (tL and tM) at 
the first stage, and the adaptation section duration and 
inertia factor (d and α) at the second.  

Both parameters of the first stage were set 
independently to favorite the QRS of any morphology 
and discriminate all other events (e.g. noise, spikes) 
possibly present in the ECG signal.  

Thresholding of a detection function of any origin 
produces two kind of errors: false positive (fp), when 
non-existing events are detected and false negative (fn), 
when existing events are not detected. Based on the total 
number of events and assuming the sensitivity Se and 
positive predictive value Pp calculated accordingly to (5): 

 
ܵ݁ ൌ

௧௣

௧௣ା௙௡
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݌ܲ ൌ
௧௣

௧௣ା௙௣
∙ 100%

  (5) 

equally influence detection quality, the latter is 
commonly expressed as area (AUC) under the receiver 
operating curve (ROC). Both thresholding parameters: 
duration of the adaptation section d and adaptation inertia 
α have temporal coincidence and may be considered 
jointly. Fast responsiveness yields higher fp detection 
ratio and thus decreases Pp, whereas low responsiveness 
yields higher fn detection ratio and thus decreases Se. 

Consequently, we performed a two-step optimization 
process:  
 first looking for best threshold adaptation parameters 

d and α for each given slope duration (fig. 2), and  
 then iteratively looking for the best value of AUC in 

two-dimensional space with variables tL and tM 
(tL > tM) corresponding respectively to long- and 
short term slope durations.   

 
Fig. 2 Example of pursuit for best threshold adaptation 

parameters based on area under a receiver operating 
characteristics. 

 
Considering that the MIT Arrhythmia Database 

(MITDB) [10] consists of samples of different QRS 
morphology in a true-to-live ratio, the method was tested 
with original records from MITDB. Although a non-
integer sample number can be considered in both time 
windows, we only used a consecutive increment of the 
window length by one sample (i.e. 2.777 ms). 

 
3. Results 

Principal results of the reported research were optimal 
values of length of short- and long-time slopes. The 
maximum values of AUC achieved by combination of 
thirteen short time windows (ranging from 3 to 15 ms) 
and thirteen long time window (ranging from 15 to 
27 ms) are presented in fig 3.    

The combination of short- and long-time regression 
window yielding a global AUC maximum is: 7 and 21 
samples (i.e. 19.5 and 58.3 ms). The resulting AUC is 
0.9978 what suggests a simultaneously rare occurrence of 
false detection of both types (0.22 %). The achieved 
results in sensitivity (Se = 99.91%) and positive 
predictive value (Pp = 99.87%) make the proposed 
algorithm comparable with the most recent achievements 
in the domain (Tab. 1).  

Detailed results on robustness to outliers, missing data 
and processing signals of sampling rates in the range of 
200-500 Hz are presented in our previous work [7].  
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Fig. 3 Mesh of maximum AUC value for combination of 
different short- and long-time slopes  
 
Table 1. Performance of the proposed algorithm 
compared to selected other work. 

algorithm 
results 

Se [%] Pp [%] Fd [%] 

Pan and Tompkins (1985) [1] 99.75 99.54 0.71 

Martínez et al (2004) [11] 99.80 99.86 0.34 

Martínez et al (2010) [8] 99.71 99.97 0.32 

Song et al. (2015) [9] 99.91 99.91 0.18 

proposed algorithm 99.91 99.87 0.22 

 
4. Discussion 

Optimization of a novel QRS detector scheme was 
presented in this paper. This procedure was necessary to 
properly capture long-term and short-term variability of 
the signal as the only characteristic features of the QRS 
complex. The use of these features is motivated by 
electrical and mechanical processes typical for a heartbeat 
and makes the detection less prone to the signal quality. 
An interesting feature of the detection scheme is 
independence on signal sampling and tolerance for 
outliers and missing values. Therefore, the detection is 
robust against bad signal quality and allows various 
sampling frequencies at signal input.  

The detection scheme is based on piecewise linear 
regression. It doesn’t contain any form of digital filtering 
and the remapping of the signal to the detection function 
allows for asynchronous (and even non-uniform) 
sampling.  

The preliminary optimization of threshold adaptation 
parameters d and α, is essential, as it yields a maximum 
value of AUC in ROC. The principal optimization, 
however, consists in finding slope duration parameters for 
appropriate representation of QRS-related phenomena. 

 
Some limitation of the reported work comes from the 

use of sampling interval-dependent iterative adjustment 
of slope length. Therefore, further development of the 
proposed detection scheme needs verification of the 
results on databases with different sampling frequencies. 
An alternative approach assumes variable step iteration 
and respective resampling of the reference database.  
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