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Abstract 

Typically, ECG is corrupted by baseline wander (BW), 
electrode motion artifact (EM) and muscular artifact 
(MA). To eliminate them, ECG is usually pre-filtered by 
application of linear techniques which, however, do not 
remove in-band components which may limit the ECG 
clinical usefulness if further processing is not performed. 
The Segmented-Beat Modulation Method (SBMM) is a 
template-based filtering technique which segments each 
cardiac beat into QRS and TUP segments, respectively 
independent and proportional to heart-rate, and 
adaptively adjusts each reconstructed beat to its original 
length by modulating and demodulating the TUP 
segments. The aim of the present study was to evaluate 
SBMM robustness to noise by applying it to one synthetic 
and 18 clinical ECG tracings before and after corruption 
with BW, EM and MA. Results indicate that, in all cases, 
clean ECGs are estimated with errors <0.15 mV, 
typically greater in the QRS than in the TUP segments (0-
123 µV µV vs 0-25 µV; P<10-5). Moreover, MA little 
affected ECG estimation, while BW and EM caused 
higher errors especially in the QRS segment which 
however remained quite small. Thus, the SBMM resulted 
to be a filtering technique quite robust to noise. 

1. Introduction

The electrocardiogram (ECG) is a simple, cheap 
noninvasive recording of the electrical activity of the 
heart worldwide used in clinics to assess its functionality 
[1]. Each heartbeat is represented by an ordered sequence 
of typical waves (namely P, QRS, T and eventually U 
waves) which represent the different phases of atrial and 
ventricular depolarization and repolarization. Each wave 
is characterized by a time duration, a range of amplitudes 
(voltages) and a typical morphology. Any deviation from 
the normal tracing is potentially pathological and 
therefore of clinical significance. However, ECG 
interpretation may be difficult in case of noise affecting, 
and thus distorting, the ECG. Typically, the ECG signal 
recorded by skin electrodes is corrupted by noise of 
different nature [1-4], mainly including baseline wander, 
electrode motion artefact and muscular artefacts. Baseline 
wander is usually a low-frequency and high bandwidth 

noise component that can be caused by respiration, body 
movements and perspiration [5]. Electrode motion 
artefact is a low frequency noise component that results 
from motion of the electrode [6]. Eventually, muscular 
artefacts, which is a high frequency noise component, is 
caused by the random contraction of muscles, as well as 
by sudden body-movements. The electrical activity of 
muscles during the contraction can generate surface 
potentials that could completely drown out the ECG [7]. 
To get rid of all the above mentioned kinds of noise, ECG 
is usually pre-filtered by application of linear techniques 
[8,9]. However, the noise frequency-components that fall 
within the ECG frequency band survive pre-filtering and 
change its morphological characteristics, making difficult 
the extraction of ECG clinically useful information 
[4,10]. In these cases the application of further signal 
processing techniques is required in order to get rid of the 
survived noise without distorting the signal of interest [5-
7]. In the common situations in which the ECG 
morphology is corrupted by noise surviving pre-filtering 
but the R peaks (which are the highest amplitude waves 
in the ECG) are still detectable, template-based 
techniques have been proposed [11] to extract a clean 
version of the ECG from the noisy recording. Briefly, 
such techniques identify all the beats present in the ECG, 
overlap them after R-peak alignment, and eventually 
average them to reduce noise and get a clean template-
beat. Eventually, such template-beat is concatenated to 
get a clean ECG tracing that estimates the ECG of 
interest. The major limit of most of such techniques is the 
missed ability to reproduce physiological heart-rate 
variability and morphological variability [12]. Recently, a 
new template-based filtered procedure, termed 
segmented-beat modulation method (SBMM), has been 
presented [13,14] to overcomes such limit by adaptively 
adjusting each reconstructed beat to the original beat 
length [14]. However, its robustness to noise has not been 
tested yet. Thus, the aim of the present study was to 
evaluate the SBMM robustness to noise.  

2. Data and method

2.1. Data 

Both synthetic and clinical data were used in this 
study. Synthetic data consisted of a 60 s ECG obtained by 
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N-fold repetition of a single clean 0.75 s beat from a 
healthy subject. Thus the synthetic ECG was 
characterized by a heart rate (HR) of 80 bpm and no HR 
variability (HRV) or morphological variability. Clinical 
data consisted of 18 ECG signals from healthy subjects 
with no significant arrhythmias, all belonging to the 
“MIT-BIH Normal Sinus Rhythm Database” [15] of 
Physionet (www.physionet.org). All clinical ECGs were 
60 s long and, overall, they were characterized by a HR 
ranging from 63 bpm to 110 bmp, and a HRV, measured 
as the RR-interval standard deviation, ranging from 15 ms 
to 78 ms. All clinical tracings were pre-filtered (0.5-35 
Hz bandpass filtering by a 3rd-order spline interpolation) 
to minimize the level of noise affecting them. Then, the 
three noise recordings containing baseline wander (BW), 
electrode motion artifact (EM) and muscolar artifacts 
(MA) available at the Physionet “MIT-BIH Noise Stress 
Test Database” [15,16] were added to each clean 
(synthetic or clinical) ECG after a 70% reduction of their 
amplitude in order to simulate low-amplitude noise 
surviving pre-filtering.  

 
2.2. Segmented beat modulation method 

The SBMM [13,14,17] provides a clean ECG signal 
from a noisy recording, under the hypothesis of knowing 
the R-peak positions. The algorithm is based on the 
practical observation that, in first approximation, the QRS 
complex duration is independent from HR, whereas the 
duration of all other ECG waves is proportional to it [18]. 

By considering the beginning of the cardiac cycle (CC) 
between the P-wave offset and Q-wave onset rather than at 
the beginning of the P wave, each beat can divided into 
two segments: the QRS and the TUP (Fig. 1), respectively 
identified ±t ms (for example t=40 ms) around the R 
peak, and within the time interval that begins t ms after 
the R peak and ends t ms before of the subsequent R 
peak. Thus, a CC is an ECG portion between t ms before 
the R peak and t ms before the subsequent R peak. Each 
CC is characterized by its own duration (CCd), which may 
vary due to HRV. However, the duration of all QRS 
segments is 2·t in all CC, while the duration of the TUP 
segments is beat-dependent and equal to CCd-2·t. After 
having segmented all N beats, the median CCd (mCCd) is 
computed. Then, the median CC (mCC) is computed after 
having modulated (stretched or compressed) all CC to 
have their length to match mCCd. For the median operator 
properties, the noise level affecting mCC is drastically 
reduced. Since all QRS segments have the same duration, 
the modulation process involves the TUP segments only 
(Fig. 2). The mCC represents the basic template-beat 
which is concatenated N times to get the estimated ECG 
containing the same number of beats of the original one. 
Each mCC constituting this tracing is then segmented and 
each TUP segment is demodulated (compressed or 
stretched) to match the length of the relative TUP segment 
in the original noisy ECG tracing (Fig. 3). Consequently,  

 
Figure 1.  Segmentation of the CC into QRS and TUP segments 

(CCd: CC duration). 
 

 
Figure 2.  Block diagram relative to the mCC computation. 

 

 
Figure 3.  Block diagram relative to the clean ECG estimation. 
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estimated ECG and original ECG are equally long. 
Optimization processes, involving cross-correlation 
maximization and error minimization between each 
reconstructed beat and the corresponding one in the 
original signal, are performed in order to compensate for 
possible small inter-beat, HR-independent variations of 
the CC waveforms. 
 
2.3. Statistical analysis 

To evaluate the SBMM robustness to noise, two 
different errors (Eq. 1 and Eq. 2) were evaluated by 
comparing each clean estimated ECG with the 
corresponding noisy ECG:  
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Thus, εQRS and εTUP, in µV, indicate the median (over the 
N beats) QRS and TUP errors calculated as the median 
(over the samples SQRS and STUP) of the absolute 
differences between the estimated (eQRS and eTUP) and 
the original (QRS and TUP) ECG segments. Normality of 
εQRS and εTUP distributions were evaluated using the 
Lilliefors’ test. Not normal distributions were reported in 
terms of 50th (median) [25th–75th] percentiles, and 
compared using the Wilcoxon Rank-Sum test for equal 
median. Statistical significance level was set at 0.05. 

 
3. Results 

When applied the clean synthetic ECG, the SBMM 
estimated the ECG with no errors (εQRS=εTUP=0 µV). 
Instead, when estimating the synthetic ECG from the 
noisy recordings, errors were εQRS=78 µV and εTUP=4 µV 
for BW; εQRS=123 µV and εTUP=10 µV for EM; and 
εQRS=17 µV and εTUP=5 µV for MA.  

Figure 4 shows the effect of the SBMM on a clinical 
tracing. Quantitative results relative to all clinical ECGs 
are reported in Table 1. In all cases ECGs were estimated 
with errors <0.15 mV; εQRS (42-123 µV) were always 
greater than εTUP (13-25 µV; P<10-5). MA little affected 
ECG estimation since errors were comparable to those 
obtained without adding noise (εQRS=42 µV and εTUP=13 
µV for No noise vs εQRS=46 µV and εTUP=14 µV for MA). 
Instead, BW and EM caused comparable error increments 
(εQRS=101 µV and εTUP=17 µV for BW vs εQRS=123 µV 
and εTUP=25 µV for EM) significantly higher than those 
obtained with No noise (P<10-3). 

 
4. Discussion 

This study evaluates the SBMM [13,14,17] robustness to 
noise. Similarly to other methods, the SBMM relies on the 
concatenation of a template-beat [11] to estimate a clean 
ECG. However, only this technique includes the 
segmentation of the CC into the QRS and TUP segments,   

 

Figure 4.  Example of a clinical ECG filtered by SBMM. An 
ECG (dotted line) is depicted before adding noise (panel a) and 
after adding BW (panel b), EM (panel c) and MA (respectively). 
The SBMM eliminates most of the noise and allow the extraction 
of a clean ECG (solid line) in each noisy condition.  

Table 1. Errors values when estimating ECG tracing from 
clean and noisy recordings.  

Noise 
εQRS 
(µV) 

εTUP 
(µV) 

PSeg 

No noise 42 [27-49] 13 [11–19] <10-5  

BW 101 [93–111]** 17 [15-28] <10-6 

EM 123 [114-135]** 25 [21–33]* <10-6 

MA 46 [38–60] 14 [12–20] <10-6 

*, **: P-value<10-3, <10-6, when comparing errors of a segment 
(QRS or TUP) with a specific noise vs. no noise. 
PSegment: P-value when comparing errors relative to QRS vs. 
TUP segment for a specific noise.  
 
respectively independent and proportional to preceding 
RR interval [18]. The modulation/demodulation 
procedure performed on the TUP segments initially to 
force all CC to become mCCd long before mCC 
computation, and then to have estimated beats to return to 
their original length, strongly improves accuracy of the 
estimated clean ECG [14,17], and makes the SBMM 
different from all other template-based techniques. The 
SBMM can be applied only if the R peaks relative to the 
noisy ECG signal are known. In most clinical cases, such 
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condition is satisfied since ECG signals are supposedly 
pre-filtered and the amplitude of the R peaks is usually 
higher than the noise surviving pre-filtering so that they 
can be detected by specifically designed algorithms [19]. 
In less frequent cases in which the R peaks are not 
directly derivable from the original, possibly noisy 
original recording, the R peaks have to be indirectly 
obtained, for example using other ECG leads or from 
other signals before the SBMM can be applied. 

In this study the SBMM was tested in synthetic as well 
as in clinical ECG tracings affected by the most common 
kinds of noises, which are BW, EM and MA in order to 
test its robustness to noise. The synthetic tracing was 
considered because, before being corrupted by noise, it 
represents the ideal condition of an ECG affected by no 
HRV and morphological variability. Consequently, the 
only confounding factor in its estimation by SBMM was 
identifiable in the added noise. Results indicate, the 
SBMM is able to estimate the synthetic ECG with no 
error (perfect reconstruction) if not corrupted by noise, 
and with errors ranging from few µV (in correspondence 
of the TUP segment) to tens of µV (in correspondence of 
the QRS segment) if corrupted by noise. EM was the 
noise that most affected ECG estimation, followed by 
BW and MA. Clinical data consisted of ECG tracings 
from healthy subjects, since these were real but as close 
as possible to ideal ECGs (characterized by limited HRV 
and morphology variability). Results indicate that, in all 
cases clean ECGs are estimated with significantly smaller 
εTUP than εQRS. Such results that the TUP segment is 
characterized by low frequency components than the QRS 
segment. In addition, very small values of εTUP are due to 
the SBMM ability to track physiological variability of 
TUP segment. Among the noises, MA little affected ECG 
estimation, while BW and EM caused higher errors 
especially in the QRS segment which however remained 
quite small (<0.15 mV). Thus, the SBMM resulted to be a 
filtering technique quite robust to the most common kinds 
of noise typically affecting ECG tracings. 

 
5. Conclusions 

The SBMM proved to be a useful tool for providing 
clean ECG estimations of tracings affected by the most 
common kinds of noise, which are BW, EM and MA. 
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