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Abstract

Electrocardiographic imaging (ECGI) is a technology
with great potential to support pre-procedure planning for
ablation interventions. However, since the inverse prob-
lem it tries to solve is ill-posed, it requires regularization
to stabilize the solutions. There have been multiple ap-
proaches to attain this objective with different regulariza-
tion techniques that impose spatial or temporal behaviour
on the solution based on prior electrophysiological knowl-
edge with softer or harder constraints. It is continuing re-
search to determine which prior knowledge added is better
suited in each situation and there is a need to compare
different methods on the same dataset to resolve that ques-
tion. Here we compare two temporal methods that lie at
both sides of the softness/hardness imposition of the prior
knowledge. In one hand the splines method by Erem et
al. imposes smoothness on the solution, while the car-
diac isochrone positioning system (CIPS) forces the so-
lutions to be step-function shaped in time. For this com-
parison we use the PSTOV dataset from the consortium
on electrocardiographic imaging www.ecg—imaging.
org which consists of body surface data during pacing
at endocardial sites from subjects with healthy ventricles.
The results show that on average CIPS performs better
than the splines method, although there is too high a de-
gree of variability within and across subjects and pacing
locations to be able to predict which method performs bet-
ter in an individual case.

1. Introduction

Electrocardiographic imaging (ECGI) is a technology
that tries to non-invasively image the electrical activity on
the heart from electrocardiographic measurements on the
body surface (BSP) and anatomical information about the
heart and torso and which has a lot of potential in pre-
procedure planning for ablation procedures. However, the
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ill-posedness of this problem makes the solutions obtained
very sensitive to noise and modeling errors and thus re-
quire regularization of the iterative solution method based
on prior knowledge.

Regularization methods can be classified as spatial or
temporal, depending on the type of prior assumed, or as
having softer or harder constraints, depending on how
strict is the prior knowledge being imposed on the solu-
tion. Examples of these methods are Tikhonov regulariza-
tion (spatial and soft), the spline method from Erem et al.
(spatial + temporal and soft) or the cardiac isochrone posi-
tioning system (CIPS) (hard temporal + soft spatial) [1-4].

It is not trivial to determine a priori which method per-
forms better for a specific patient ECG. Approaches that
impose a strict temporal model on the solution are more re-
silient to the effects of ill-posedness, but they are more de-
pendent on the model being an accurate description of the
solution, while softer constraints may suffer from the op-
posite problems. Hence, it is necessary to thoroughly com-
pare all methods across different datasets to determine in
which situations it is preferable to implement one method
or another.

Here we take a first step in that process and compare
two temporal regularization methods with different ap-
proaches to soft/hard imposition of the constraints. On
one hand, the splines method imposes smoothness on the
solution through a spline interpolation whose parameters
are learned from the BSP. On the other, CIPS restricts
the transmembrane potential (TMP) temporal profile to be
similar to a step function that arises at an unknown time.
To compare these approaches, we use the PSTOV dataset,
available at the consortium of electrocardiographyic imag-
ing (CEIswww . ecg—imaging.org), which consists on
a set of endocardial pacing experiments on human sub-
jects.
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2. Methods

In this section we briefly describe the methods used for
this work. We do not intend to present a thorough de-
scription of the methods, for a more detailed description
of those please refer to [2-4].

2.1. Splines

This method introduces a soft temporal prior that im-
poses smoothness on the inverse solutions. Its underlying
assumption is that the temporal evolution of the heart sur-
face potentials (EGM) follows a smooth curve in a high-
dimensional space, —a 1D manifold— whose character-
istics are similar to one observed on the BSP. To approx-
imate this manifold on the BSP, this method fits a multi-
dimensional spline that is independent of the time stamps
of the potentials. Thus, the fitting recovers a set of knot
points, which are potentials in themselves and characterize
the shape of the curve, and the time warp, that determines
the temporal interpolation of all the measured potentials on
the spline. The use of splines to interpolate the potentials
in time is especially useful since the parameters that fully
determine the curve, the knot points (x5, ;), are potential
distributions in themselves, and thus can be used to solve
for the equivalent knot points of the EGM (k; ;). Any
ECGI method can be used as inverse solver; the current
implementation of this method uses a 1rst order Tikhonov
regularization that trades-off the least-squares fit of the er-
ror with the minimization of the spatial gradient of the po-
tentials (Equation I)), where A is the forward matrix and
D is an operator that approximates the spatial derivative of
the potentials.

min [y — Areal3 4 ADRoil3 (1)
After solving for the knot points on the heart, they are then
used to recover the full temporal sequence of potentials
with the time warp learned during the BSP fitting. This
method is potential based —i.e. reconstructs the poten-
tial distribution on the heart—, thus, for it to recover the
point of first activation, it is necessary to estimate the cor-
responding activation times. To do so, we use a spatio-
temporal approach, which weights the minimum dv/dt of
the heart potentials with their spatial gradient to favor so-
lutions that follow the wavefront of activation. Finally, we
smooth the resulting activation times on the heart as was
described in [2]]. We determine the point of first activation
as the node with earliest estimated activation time.

2.2. CIPS

This is a method with a highly restrictive model for the
temporal behavior of the solution. It assumes that during

218

depolarization on a healthy ventricle the temporal profile
of the TMP is well represented by a continuous approx-
imation of a step function. With this model, solving for
the potentials on the heart simplifies to finding the mo-
ment at which this step function arises on each node of the
heart surface —i.e. the activation times. CIPS solves for
these unknowns with the non-linear least squares function
in (Equation 2), where y(t) are the ECG measurements,
u(t) is the step function shifted at the activation time (p)
that corresponds to each node, A is the forward matrix that
relates the two and L is the regularization matrix that ap-
proximates the Laplatian operator.

min [y (t) — Au(t = p)l3 + A Lpll3 2)
This optimization problem can be solved with any iterative
method. However, unfortunately, it has a large number of
local minima that lead to unphysiological solutions of the
inverse problem. CIPS overcomes this limitation with a
physiologically guided initialization that uses a simplified
model for activation on the heart. It uses the fastest-route
algorithm on the heart to determine a sequence of acti-
vations that start at each individual node of the heart and
picks the simulation with smallest fitting error with respect
to the measured ECG to initialize the aforementioned op-
timization. This method directly solves for the activation
times on the heart, thus to determine the point of first ac-
tivation it is only necessary to select the node with earliest
activation time.

3. Experiments and Results

To compare these two methods, we used the PSTOV
dataset in the CEI website (www.ecg—imaging.org)
that was first used in [2]. It consists on recordings from en-
docardial pacing experiments on 3 volunteers with healthy
ventricles. The experiments were carried out with appro-
priate human volunteer subject permission from Charles
University Hospital in Prague, Czech Republic, and in con-
junction with standard atrial ablation procedures. In this
experiment, the ventricles of each subject were stimulated
multiple times at different locations in both left ventricle
(LV) and right ventricle (RV). For each stimulation site the
ECG was recorded using 120 electrodes on the body sur-
face. The position of the stimulation catheter was recorded
with the CARTO XP system and served as the ground
truth. The heart geometries were obtained from an axial
CT scan around the heart and a generic torso surface was
fitted to the sections visible on the scans. No additional or-
gans were segmented, thus using a homogeneous volume
conductor model. More details on this dataset can be found
in [2].

In this work, we used the recordings of each activation
sequence individually to reconstruct the potentials on the
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Figure 1: Scatter plot of the localization error (in mm) of
both methods. Vertical axis indicates the localization er-
ror for CIPS and horizontal for splines. The color of each
point indicates the subject: 1 in blue, 2 in green and 3 in
red. The diagonal dashed line indicates identity.

heart with each method. To evaluate the error we compared
the position of the earliest activation against the CARTO
coordinates projected onto the nearest node on the heart.
The results for the localization error of both methods can
be found in the scatter plots from In this scat-
ter plot, each axis represents localization error of each one
of the two algorithms, thus points along the identity line
(dashed diagonal line) indicate equal results, while points
above or below indicate better results for splines or CIPS
respectively. The distribution of the results reveals con-
siderable variability across and within subjects, pacing lo-
cation and method used. Both methods have a range of
results from 15 — 20 mm up to ~ 75 mm. However, CIPS
has less density of results with higher error (> 50) mm,
which on the scatter plot translates to a majority of points
below the identity line.

shows the histogram of the difference between
results between splines and CIPS. Negative results indi-
cate improvement for CIPS and positive for splines. In
it, it is clearer that on average CIPS performs better than
splines. The mean variation is of ~ 5 mm of improve-
ment with CIPS, which attains improvements of 20 mm
for a substantial number of recordings. Nevertheless, there
is a noticeable number of recordings for which the splines
method solves the inverse problem with more accuracy.

4. Discussion

The results obtained in this comparison show that both
methods obtain solutions in a similar range of localization
error, although on average, CIPS is better at detecting the
location of initial activation on the heart. However, the
high variability observed within and across different sub-
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Figure 2: Histogram of difference between localization er-
ror (in mm) for splines minus CIPS for each subject. Neg-
ative values indicate smaller localization errors for CIPS
and positive values smaller errors for the splines method.

jects, locations and methods makes it hard to predict with a
reasonable degree of certainty which method is to perform
better on an individual recording.

There are multiple factors that need to be considered
when analyzing these results. First, these experiments
were carried out on subjects with healthy ventricles, which
fits the basic assumption of CIPS. The presence of scar
or ischemia on the myocardium would affect CIPS more
than the splines, thus it would be necessary to add such
examples in a more extensive testing experiment as in [3].
Second, the used homogeneous volume conductors pose a
major challenge to both inverse solution methods, as the
omission of blood cavities and lungs create modeling er-
rors which influence the results of the inverse procedures.
Including these additional inhomogeneities might improve
the solutions obtained with both inverse methods. Another
challenge from this dataset that should be considered is the
uncertainty introduced in the registration of the CARTO
locations onto the heart geometry. This procedure might
be adding unrealistic errors in the ground truth for both
methods. Finally, the spline method is a potential based



method and it does not resolve for activation times. Hence
it requires of a further estimation of these, which is not a
solved research problem and is bound to introduce error in
the solutions.

5. Conclusions

We compared two temporal regularization methods that
differ on the softness/hardness of their constraints. In one
case, the spline method only imposes smoothness on the
solutions, while CIPS restricts those to behave as a step
function. The experiments carried out in human data from
pacing experiments show that, on average, CIPS performs
better than the splines method. However, there is a high
degree of variation in the results obtained across and within
methods that does not allow to determine which method is
to perform better for an individual recording.
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