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Abstract 

Slow conduction is a well-known pro-arrhythmic 

feature for tachycardia and fibrillation. Cardiac 

conduction velocity (CV) mapping can be extremely 
helpful for investigating unusual activation patterns. 

Although methods have been developed to estimate 

velocity vector field, from ex-vivo preparations (e.g. from 

optical mapping recordings), the estimation from in-vivo 

electrograms (EGMs) remains challenging. This paper 

presents a new method specifically designed for EGMs 

reconstructed non-invasively from body surface potentials 

using electrocardiographic imaging (ECGi). The 

algorithm is based on cardiac activation maps and 

assumes either a linear or quadratic wavefront shape. 

The proposed methodology was performed on computed 

and experimental data for epicardial pacing on healthy 
tissue. The results were compared with reference velocity 

vector fields and evaluated by analyzing the errors of 

direction and speed. The outcomes indicate that a linear 

wavefront is the most suited for cardiac propagation in 

healthy tissue. 

1. Introduction

The coordinated propagation of an electrical wavefront 

(WF) through the myocardium contributes to effective 

cardiac contraction in the healthy heart. This WF can 

slow down when it crosses pathological tissues, such as 

ischemia or scars. This activation latency allows the re-

depolarization of healthy quiescent myocytes in 

neighbouring damaged tissue. This can cause an 

abnormal trigger leading to arrhythmias such as 

fibrillation or tachycardia. Therefore, estimating the 

velocity vector field to describe the local direction and 
speed of the propagating WF is a relevant tool to identify 

patients at risk of arrhythmia, and to localize pathological 

tissues for surgical treatments. To measure the WF 

pathway through the myocardium, electrograms (EGMs) 

are recorded across the ventricles. 

For ex-vivo preparations, EGMs can either be recorded 

directly with electrodes applied to the heart, or derived 

from optical mapping. For these cases, accurate 

conduction velocity (CV) mapping methods have 

previously been developed [1]. For in-vivo experiments, 
EGMs can be recorded invasively using catheters or 

reconstructed non-invasively using electrocardiographic 

imaging (ECGi) from body surface potentials. While CV 

mapping algorithms have been developed and are 

currently used clinically for invasive recordings [2], 

ECGi reconstructions provide smoother EGMs. Hence, 

CV mapping has to be adapted to overcome these 

constraints. 

In this study, we describe a novel method specifically 

designed for EGMs reconstructed non-invasively, to 

estimate local epicardial velocity vector fields on the 
ventricles (Fig. 1). This tool uses the local activation time 

(AT) map, i.e. a geographic representation of the time 

when the electrical wavefront passes beneath each 

electrode. Then, it customizes a model linking the spatial 

coordinates of the electrodes to theirs ATs. It comes in 

two versions: a computationally efficient version which 

assumes a locally linear activation WF (CV1), and the 

second assuming a locally quadratic WF (CV2). 

Figure 1. System overview: EGMs are reconstructed non-
invasively using ECGi and ATs derived. A local region is then 
used to create the CV map assuming two activation WF shapes. 
This gives an estimate of the local velocity vector field 

containing information of speed and direction of the propagating 
electrical WF. 
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2. Methods

2.1. Activation time derivation 

The method was performed on unipolar EGMs. The 

ATs are so defined as the maximum negative deflection 

of each EGM. Therefore, each electrode 𝑖 is defined by its 

3-D Cartesian coordinates, [𝑋𝑖  𝑌𝑖  𝑍𝑖], and its AT, 𝑇̃𝑖.

2.2. Cardiac conduction velocity mapping 

The local velocity vector, 𝐕𝐢 = [𝑉𝑖
𝑋  𝑉𝑖

𝑌  𝑉𝑖
𝑍], at each

electrode 𝑖 is derived from a group of 𝑁 neighbouring 

electrodes, for which the ATs, 𝑇̃𝑘 , and the 3-D 

coordinates, [𝑋𝑘  𝑌𝑘 𝑍𝑘], are known, with 𝑘 ∈ ⟦1 ; 𝑁⟧. The

methodology is divided in three steps: 

1) 𝑁 electrodes [𝑋𝑘  𝑌𝑘 𝑍𝑘] are orthogonally projected

into 2-D coordinates, [𝑥𝑘  𝑦𝑘], using a singular

value decomposition.

2) The local 2-D velocity vector 𝐯𝐢 = [𝑣𝑖
𝑥  𝑣𝑖

𝑦] at

electrode 𝑖 is calculated. 

3) 𝐯𝐢 is inversely projected into 3-D coordinates

using the changing base found in 1, to get 𝐕𝐢 on

the original surface.

Figure 2. Representation of the locally linear (blue line and 

plane) and quadratic (red line and plane) activation WFs. 

For step 2, the model linking the 2-D coordinates of 
each electrode to their AT is customized in two ways. The 

first computationally efficient version (CV1) assumes a 

locally linear activation WF at electrode 𝑖 (Fig. 2) defined 

as: 

𝑇(𝑥, 𝑦) = 𝑎(𝑥 − 𝑥𝑖) +  𝑏(𝑦 − 𝑦𝑖) + 𝑐 (1) 

with (𝑎, 𝑏, 𝑐) ∈ ℝ3. 

The second (CV2), commonly used for ex-vivo 

preparations [1], assumes a locally quadratic electrical 

WF at electrode 𝑖 (Fig. 2) defined as: 

𝑇(𝑥, 𝑦) = 𝑎(𝑥 − 𝑥𝑖)
2 +  𝑏(𝑦 − 𝑦𝑖)

2 + ⋯
𝑐(𝑥 − 𝑥𝑖)(𝑦 − 𝑦𝑖) + 𝑑(𝑥 − 𝑥𝑖) + 𝑒(𝑦 − 𝑦𝑖) + 𝑓

(2) 

with (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) ∈ ℝ6. 

The model parameters (𝑎…𝑓) are calculated by 

minimizing the least square error between the 

reconstructed ATs, 𝑇̃𝑘 , and those estimated with the 

model, 𝑇(𝑥𝑘 , 𝑦𝑘):

min
𝑎,𝑏,𝑐…

∑(𝑇(𝑥𝑘 , 𝑦𝑘) − 𝑇̃𝑘)
2

𝑁

𝑘=1

(3) 

𝐯𝐢 can then be calculated [1] using the spatial gradient of

𝑇(𝑥, 𝑦) at the 2-D coordinates [𝑥𝑖  𝑦𝑖] of the electrode of

interest 𝑖: 

 𝐯𝐢 =
∇ 𝑇(𝑥, 𝑦)

‖∇ 𝑇(𝑥, 𝑦)‖2
 |

(𝑥=𝑥𝑖  𝑦=𝑦𝑖)

(4) 

with ‖∙‖, the Euclidian norm. 

2.3. Databases 

Simulated Data 

The method was first validated on a realistic heart 

model data set. Propagating action potentials (APs) were 

computed with a mono-domain reaction-diffusion model 

on a finite-difference mesh with 0.2mm resolution. The 

transmembrane ionic currents were computed with the 

TNNP model [3], using different parameter values for the 
left (LV) and right ventricle (RV) and for the 

subendocardial, mid-myocardial, and epicardial layers. 

The simulated transmembrane currents were injected in a 

bi-domain torso model at 1mm resolution to compute the 

extracellular potential field, for each millisecond of 

simulated time. In this study, for 3 patterns of paced 

activation (on the RV free wall, the LV lateral midwall 

and the LV lateral epicardial), APs extracted from 1629 

epicardial points were used as validation data and 

potentials extracted from 252 surface "electrode" sites 

were used as input for ECGi reconstruction at 1629 points 

applying the MFS [4]. The heart and torso models 
included anisotropic myocardium with transmural fiber 

rotation. The torso model had an anisotropic skeletal 

muscle layer. Simulations were performed with the 

propag-5 software [5] and run on a BlueGene/Q 

supercomputer operated by IDRIS (France). 

In-situ Recordings 

The method was also evaluated using an in-vivo data 

set, obtained from an anaesthetized, closed-chest, pig [6]. 

Electrical signals were recorded simultaneously i) on the 

ventricular epicardium using a custom-made elastic sock 
consisting of 239 unipolar electrodes (5-10 mm spacing) 

and ii) across the thorax using flexible electrodes strips 

(BioSemi, the Netherlands), containing 170 electrodes 

(30-45 mm spacing). Recordings were made during 10 

different epicardial pacing sequences. Post-mortem MRI 

was used to construct a subject specific geometry, with 

MRI contrast markers to localize sock and strip 

electrodes. In this study, epicardial EGMs were 

226



reconstructed at the 239 sock electrode locations using 

ECGi and applying the MFS [4]. 

2.4. Validation 

As the velocity vectors contain information about the 

speed and direction of a propagating WF, both angle (5) 

and speed (6) errors are computed. For this, the CV1 and 

CV2 estimated velocity vectors 𝐕𝐢
𝐂𝐕𝟏,𝟐

 were compared to

a gold standard (GS) 𝐕𝐢
𝐆𝐒 for each electrode 𝑖

𝜃𝑒𝑟𝑟
𝑖 = |cos−1 (

⟨𝐕𝐢
𝐆𝐒|𝐕𝐢

𝐂𝐕𝟏,𝟐⟩

‖𝐕𝐢
𝐆𝐒‖ × ‖𝐕𝐢

𝐂𝐕𝟏,𝟐‖
)| (5) 

with ⟨∙ | ∙⟩, the scalar product. 

𝑠𝑒𝑟𝑟
𝑖 = ‖𝐕𝐢

𝐂𝐕𝟏,𝟐‖ − ‖𝐕𝐢
𝐆𝐒‖ (6) 

For the simulated data, the gold standard vector field 

𝐕𝐢
𝐆𝐒 was computed directly from APs; for the in-vivo data

it was estimated from the recorded epicardial EGMs. 

Outlier values were removed from the analysis in 

accordance to the Tukey’s statistics. 

3. Results

CV1 and CV2 were performed on each dataset and 

analyzed. Table 1 displays the overall angle 𝜃𝑒𝑟𝑟 and

speed 𝑠𝑒𝑟𝑟  error values:

Simulated model Experimental model 

CV1 CV2 CV1 CV2 

𝜃𝑒𝑟𝑟 (°)

Median 22.94 23.11 27.74 33.17 
1st quartile 11.52 11.50 13.05 15.22 
3rd quartile 41.79 41.88 51.98 68.29 

𝑠𝑒𝑟𝑟 (m/s)

Median 0.49 0.50 1.24 1.32 
1st quartile 0.17 0.17 0.47 0.51 
3rd quartile 1.51 1.55 2.53 2.72 

Table 1. CV1 versus CV2 angle (𝜃𝑒𝑟𝑟) and speed (𝑠𝑒𝑟𝑟) errors.

(a) RV  (b) RV 

 ATs 
  (ms)

(a) LV (b) LV 

Figure 3. Gold standard (a) versus CV2 (b) velocity vectors for 
the simulated data. The onset of activation (red) is on the RV, 
the termination (blue) on the LV. 

(a) RV (b) RV 

 ATs 
  (ms)

(a) LV (b) LV 

Figure 4. Gold standard (a) versus CV1 (b) velocity vectors for 
the pig data. The onset of activation (red) is on the RV, the 
termination (blue) on the LV. 

Fig. 3 and 4 show AT maps and the velocity vector 

fields for reference and non-invasive reconstructions. Fig. 

3 displays the results from the realistic heart model for a 

RV freewall pacing sequence and Fig. 4 shows those for 

in-vivo data for a RV epicardial pacing sequence. Angle 

and speed errors for the above sequences are displayed on 

3-D meshes in Fig. 5 and 6 respectively.  

(a) RV

 

 𝜽𝒆𝒓𝒓 
  (°) 

(b) RV

 𝒔𝒆𝒓𝒓 
 (m/s) 

(a) LV (b) LV

Figure 5. Angle (a) and speed (b) errors on the ventricles, 
performing CV2 on the simulated data. 
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(a) LV (b) LV

Figure 6. Angle (a) and speed (b) errors on the ventricles, 
performing CV1 on the reconstructed data. 
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4. Discussion

CV1 and CV2 gave comparable results for the 

simulated data (Table 1). However, for experimental data, 

CV1 performed better than CV2. Nevertheless, the 

overall results are dependent on the customization of the 

local WF model. The model parameters are estimated at 

each electrode using neighbouring points to reduce noise 

and imprecision. According to [1], the optimal number of 

neighbouring points is 20. However, in this study it is 

likely noise introduced by the inverse reconstruction on 

the estimation is not efficiently reduced, leading to poorly 

estimated model parameters and consequently an 

inaccurate velocity vector field. But, if the number of 
electrodes is increased, the local dimension of the 

estimation is lost. This suggests the results could be 

improved by reconstructing electrograms to higher-

resolution meshes, before computing the velocity vectors. 

The global outcomes are also dependant on the ECGi 

reconstruction quality and derivation of ATs. The high 

𝜃𝑒𝑟𝑟 and 𝑠𝑒𝑟𝑟  values (Fig. 5 & 6) are located at the onset

and offset of activation. This corresponds to a known 

limitation of the ECGi technic. The torso volume 

smoothes high spatial frequencies of source distributions, 

leading to poor reconstruction of the pacing site [7]. In 
addition, high error values may be due to the far field 

activity dominating in region of low amplitude activation. 

Hence, in these areas, the electrode of interest and its 

neighbours have similar ATs, leading to an abnormally 

elevated estimated speed, and an inaccurate estimation of 

velocity. As well, high error values are located where 

confidence in the placement of the AT markers is low. 

Analysis of reconstructed speeds with respect to the gold 

standard reveals this. That is, the reconstructed speed is 

higher than the reference, e.g. for the simulated data with 

a pacing on the RV freewall, the gold standard gave a 
median speed of 0.77 m/s and 1.12 m/s for the 

reconstruction; For the experimental data with an 

epicardial pacing on the RV, the gold standard gave a 

median speed of 1.53 m/s and 3.39 m/s for the 

reconstruction. This increase of the overall estimated 

speed is due to a reduced AT dispersion, a known 

consequence of inverse mapping [8]. Thus, improvement 

of the ECGi reconstruction methods and the ATs markers 

placing would improve cardiac CV estimation. 

Nevertheless, the results show that the proposed CV 

mapping algorithm gives a good estimation of the 
propagation pattern (Fig. 3 and 4) with an overall median 

angle error less than 30°, suggesting this method could be 

useful in identifying sites of re-entry. Furthermore, 

although the estimated speed is not exact, regions of slow 

conduction may still be identifiable. The next step is to 

perform this algorithm on models with ischemia and 

scars. In these situations, CV2 will likely be more 

efficient due to the complexity of the cardiac propagation. 

In addition, the divergence and the curl of the velocity 

vector field [2] will be implemented to provide cardiac 

rhythm feature. Therefore, ectopic focal sources, zones of 

WF collisions and structural obstacles can be found. 

5. Conclusion

In this paper, we proposed a method that assesses the 

WF velocity vectors from ECGi data. It relies on the 

spatial coordinates of reconstructed EGMs and theirs ATs 

and assumes either a locally linear or quadratic activation 

WF. The tool was performed on simulated and 

experimental data with no structural heart disease. For 

experimental data, CV1 gave better results and is more 

computationally efficient. Nevertheless, the main 
drawback of the method is the estimation of model 

parameters using inaccurate ATs that arise due to far field 

activity. Thus, an improvement of the non-invasive 

technique will create a better velocity vector estimation. 

Acknowledgements 

This work was supported by Grant ANR-10-IAHU-04. 

References 

[1] Bayly PV, KenKnight BH, Rogers JM, Hillsley RE, Ideker 
RE, Smith WM. Estimation of Conduction Velocity Vector 
Fields from Epicardial Mapping Data. IEEE Trans on 
Biomed Eng 1998;45(5):563–71. 

[2] Fitzgerald TN, Brooks DH, Triedman JK. Identification of 
Cardiac Rhythm Features by Mathematical Analysis of 

Vector Fields. IEEE Trans on Biomed Eng 2005;52(1):19–
29. 

[3] Ten Tusscher KHWJ. A Model for Human Ventricular 
Tissue. AJP Heart Circ Physiol 2003;286(4):H1573–89. 

[4] Wang Y, Rudy Y. Application of the Method of 
Fundamental Solutions to Potential-based Inverse 
Electrocardiography. Ann Biomed Eng 2006;34(8):1272–
88. 

[5] Krause D, Potse M et al.. Hybrid Parallelization of a Large-
Scale Heart Model. In: Keller R, Kramer D, Weiss J-P, 
editors. Facing the Multicore-Challenge II. Berlin: 
Springer; 2012:120–32. 

[6] Bear LR, Cheng LK et al. The Forward Problem of 
Electrocardiography: Is it Solved? Circ Arrhythm 
Electrophysiol 2015;8:677–84. 

[7] Schneider F, Dössel O, Müller M. Filtering characteristics 
of the Human Body and Reconstruction Limits in the 

Inverse Problem of Electrocardiography. Computers in 
Cardiology 1998;25:689–92. 

[8] Chengzong Han, Zhongming Liu, Xin Zhang, Pogwizd S, 
Bin He. Noninvasive Three-Dimensional Cardiac 
Activation Imaging From Body Surface Potential Maps: A 
Computational and Experimental Study on a Rabbit Model. 
IEEE Trans Med Imaging 2008;27(11):1622–30. 

Address for correspondence. 
Corentin Dallet, corentin.dallet@ihu-liryc.fr 
IHU LIRYC, Avenue du Haut-Lévêque, Pessac France 

228




