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Abstract

The reconstruction of cardiac ischemic regions from
body surface potential measurements (BSPMs) is usually
performed at a single time instant which corresponds to
the plateau or resting phase of the cardiac action poten-
tial. Using a different approach, we previously proposed
a level set formulation that incorporates the knowledge
of the cardiac excitation process in the inverse procedure,
thus exploiting the spatio-temporal correlations contained
in the BSPMs. In this study, we extend our inverse level-
set formulation for the reconstruction of ischemic regions
to 3D realistic geometries, and analyze its performance
in different noisy scenarios. Our method is benchmarked
against zero-order Tikhonov regularization. The inverse
reconstruction of the ischemic region is evaluated using
the correlation coefficient (CC), the sensitive error ratio
(SN), and the specificity error ratio (SP). Our algorithm
outperforms zero-order Tikhonov regularization, specially
in highly noisy scenarios.

1. Introduction

The inverse problem of electrocardiography (IPE) aims
to characterize the cardiac electric sources (membrane po-
tential, epicardial or endocardical potentials, activation
times) and/or the cardiac substrate (ischemia, post-infarct
scars) regions from body surface potentials measurements
(BSPMs) [1]. The IPE is a hard technological challenge
since in its general formulation is an ill-posed problem so
a number of regularization approaches have been devel-
oped over the years to obtain stable and realistic solutions
[2, 3].

Several works have analyzed the the IPE in terms of
localizing cardiac ischemic regions [4–7]. In these stud-
ies the ischemic regions are assessed by reconstructing
the transmembrane or the epicardial potentials at a single
time-instant during the plateau phase of the action poten-

tial, thus ignoring the spatiotemporal correlation informa-
tion contained in the BSPMs. Using a different approach,
we previously developed an inverse procedure that exploits
the spatio-temporal correlations contained in the BSPMs
through a mathematical model that describes the electrical
activity of the heart [8].

In this work, we extended our methodology defined in
[8] to 3D realistic anatomical models. The performance
of the inverse procedure was analyzed in different noisy
scenarios, where BSPMs were corrupted by AWGN with
different signal-to-noise ratios (SNRs). Our method was
benchmarked against zero-order Tikhonov regularization.
Results showed that our algorithm outperformed zero-
order Tikhonov regularization, specially in highly noisy
scenarios (low SNRs).

2. Forward Model

2.1. Realistic anatomical Model

A 3D realistic anatomical model was obtained from the
segmentation and discretization of CT scan images of a 43
years old woman. The resulting geometry model consisted
of triangular meshes of 5842 and 5742 nodes, for the heart
and the torso domains, respectively (figure 1, panels (a)
and (b)).

2.2. Model of action potential

Cardiac electrical activity at the cell level was simulated
by a modified version of the two-current model (TC) [9],
which is formulated using two variables: the transmem-
brane potential v(t), and the inactivation gate variable
h(t). The voltage, which is dimensionless and varies be-
tween zero and one, is defined as follows

dv

dt
= JTC = Jstim(t) + Jin(v, h) + Jout(v) , (1)
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Figure 1. Forward model. (a) Snapshot of cardiac activa-
tion at the torso geometry at time 30 ms. (b) Heart geome-
try with an ischemic region (τin(rH) profile). (c) Resulting
ECG at a single recording site, both for ischemic a healthy
conditions.

where Jstim represents the initial stimulus, Jin and Jout
denotes the sum of all inward and outward currents, re-
spectively, which are defined as

Jin(v, h) =
h(1− v)(v − vrest)2

τin
, (2)

Jout(v, h) = −v − vrest
τout

, (3)

where vrest is the resting potential, which was incorpo-
rated in [8] to simulate the increase of the resting potential
during ischemia.

The gating variable h(t) is also dimensionless and varies
between zero and one. This variable regulates inward cur-
rent flows and obeys the following equation

dh

dt
=

{
(1− h)/τopen, v < vcrit
−h/τclose, v ≥ vcrit

(4)

where vcrit is the change-over voltage. This model con-
tains four time constants (τin, τout, τopen and τclose) which
correspond to the four phases of the cardiac action poten-
tial: initiation, plateau, decay and recovery.

The effects of ischemia were simulated by modifying
the values of τin and vrest [10]. For ischemic cells, we
set the parameter τin and vrest equal to 0.8 ms and 0.1,
respectively. For healthy cells τin and vrest were set to
0.2 ms and 0, respectively.

2.3. Model of cardiac tissue

Let ΩH ∈ R3 be the cardiac tissue, and v = v(rH , t)
the membrane potential with rH ∈ ΩH . The propagation
of v is described according to the monodomain formalism,

∂v

∂t
= ∇D · (∇v) + JTC (5)

where JTC is the ion current term current provided by
TC model, and D is the intracellular conductivity tensor
(assumed constant D = 1.4 · I mm2/ms). Equation (5)
is solved by imposing the initial conditions v = vrest at
t = 0, and no-flux boundary conditions.

To simulate the effects of ischemia at the tissue level,
we considered a regional model of ischemia where the pa-
rameters τin(rH), vrest(rH) vary linearly between healthy
and ischemic values [8,11]. Figure 1 (b) shows the τin(rH)
profile that represents the ischemic region at the heart sur-
face.

2.4. Model of BPSMs

The resulting potential distribution at position rT ∈ ΩT
outside the cardiac tissue ΩH , was calculated as

ϕ(rT , t) =
1

4πσ0

∫
ΩH

∇D · (∇v(rH , t))

R(rH , rT )
dΩH (6)

where R(rH , rT ) = ||rT − rH || represents the distance
from the source location point rH to the observation point
rT , σ0 is the medium conductivity (assumed homogeneous
and set to 1 S/m), and v(rH , t) is solution of (5).

Using finite element methods, equation (6) can be ex-
tended to N recording sites

ϕ(t) = A · v(t) (7)

where A is the so-called transfer matrix that linearly re-
lates transmembrane potential distribution v(t) to the torso
potentials ϕ(t). Figure 1 (c) represents the resulting
BSPMs at a single recording site for both healthy (no is-
chemia was present) and ischemic conditions.

3. Inverse procedures

3.1. Proposed formulation

Let ΩH be a synthetic cardiac tissue which contains an
ischemic region S ⊂ ΩH , and ϕR(t) be the observed
BSPM, with t ∈ [0, T ], being T the total recording time.
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Ischemic regions were estimated by considering a bi-
nary output: healthy and ischemic tissues. This way, a
shape reconstruction problem can be formulated using a
level set function to define the spatial distribution of τin
and vrest parameters, so that

ψ(rH) =

{
≤ 0 if rH ∈ S,
> 0 if rH /∈ S. (8)

However, since both parameters, define the same region,
we only considered the variation of τin.

In order to recover the ischemic region, we ad-
justed ψ(rH) by minimizing the misfit between ϕR(t),
and the BSPM associated to a guess configuration
ϕS(t; τin, vrest) = ϕS(t; v(ψ)). This difference was
quantified by the following cost functional

J (v(ψ)) =
1

2

∫ T

0

||ϕR(t)−ϕS(t; v(ψ))||2 dt (9)

and thus, our optimization problem can be stated as the
minimization of (9) subject to both equation (5), and its
initial conditions hold. That is,

min
ψ
J (v(ψ)) subjet to (10a)

∂v

∂t
−∇D · (∇v)− JTC = 0 in ΩH , (10b)

∂v

∂n
= 0 on ∂ΩH , (10c)

v − vrest = 0 at t = 0, (10d)

To solve (10) we used an iterative gradient descent
method following an adjoint formulation. Further details
can be found in [8, 10, 12].

3.2. Tikhonov regularization

We compared our inverse methodology with zero-order
Tikhonov regularization, which is formulated as

min
v(t)

{
||ϕ(t)−Av(t)||2 + λ2||Lv(t)||2

}
(11)

where L = I is the identity matrix (in case of zero-order
Tikhonov), and λ is the regularization parameter which
was selected according to the L-curve method [13] using
function l corner function from the Regularization tools
package [14].

The ischemic region was obtained from the estimated
values of v(t) at a particular time instant t0, following the
thresholding scheme proposed in [6]. The value of t0 was
selected as the time instant that maximized the correlation
coefficient of the reconstructed ischemic area.

4. Results

A circular ischemic region of radius 12 mm on the car-
diac surface was considered, as shown in figure 1 (b).
Then, the forward model was solved and BSPMs were cor-
rupted by AWGN with different SNRs. In order to eval-
uate the inverse solutions, a binary output was considered
(healthy/ischemic) as presented in figure 2, and the follow-
ing metrics were used [6, 7]: (1) the correlation coefficient
(CC) between the real and the reconstructed configuration;
(2) the sensitive error (SN), which is defined as the rate of
true ischemia that is not detected by the algorithm (false
negative); and (3) the specificity error (SP) , which is de-
fined as the rate of the misjudged ischemic region out the
reconstructed ischemic region (false negative).

In the case of the level set inverse procedure, the it-
erative method was initialized assuming healthy condi-
tions for the entire tissue. At each iteration, the func-
tional cost gradient was computed and both parameters,
τin(rH) and vrest(rH), were updated [12]. After 23 iter-
ations, the stop criterion (stationary cost functional) was
accomplished providing the final reconstruction. The re-
construction algorithm was applied to a single cardiac cy-
cle of length T = 240 ms in the steady state.

Overall, the proposed methodology achieved satisfying
results. Table 1 shows the quality metrics for both inverse
procedures under analysis. In the level set approach, CC
exceeded the value of 0.73 for different SNRs values. Sim-
ilarly, a SN and a SP ratios less than 0.07 and 0.40 were
obtained, respectively. In the case of Tikhonov, the corre-
lation coefficient values were not higher than 0.57.

An example of reconstruction can be seen in Fig-
ure 2. Panel (a) correspond to the ground truth
(τin(rH) ≥ 0.35 ms), were the ischemic zone is repre-
sented in red and the healthy region is represented in blue.
Panel (b) and (c) shows final reconstructions of the level
set method and the zero-order Tikhonov algorithm for
SNR = 10 dBs, respectively.

Table 1. Comparative quality metrics
Tikhonov Level Set

SNR CC SP SN CC SP SN
5 0.61 0.47 0.23 0.73 0.40 0.07
10 0.65 0.43 0.20 0.78 0.29 0.08
15 0.69 0.39 0.19 0.80 0.28 0.10
20 0.74 0.32 0.16 0.81 0.26 0.11

5. Conclusions

In this work, we extended the methodology proposed
in [8] to 3D realistic geometries. We tested our approach
with BSPMs corrupted with different SNRs values, and we

231



(a) Ground thruth (b) Level-set method (c) zero-order Tikhonov

Figure 2. Reconstruction of an ischemic region in a real anatomical geometry for SNR = 10 dBs. (a) Representations of
the true ischemic region. (b) Reconstruction for the level set approach. (c) Tikhonov reconstruction.

compared it with classical Tikhonov regularization. Our
method demonstrated to be superior for all SNRs, recon-
structing and locating the ischemic region satisfactorily. In
a future work, we aim to incorporate more realistic settings
using an electrophysiology detailed model, with a physio-
logical representation of the ischemia model. We will also
investigate the performance of this method in localizing is-
chemia from real clinical measurements. This assumes that
the electrophysiological model that would be used to con-
strain the minimization problem is sufficiently accurate.
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G, Alonso JM. Vulnerability to reentry in a regionally is-
chemic tissue: A simulation study. Annals of Biomedical
Engineering 2007;35(10):1756–1770.
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