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Abstract

Cardiac electrical imaging, that is, reconstructing car-
diac electrical activity from body surface measurements, is
a technology with great potential. However, ill-posedness
of this problem hinders its routine usage in clinical envi-
ronment and continues to motivate the search for improve-
ments on current methods. Messnarz et al. introduced
an algorithm that constraints the reconstructed transmem-
brane potential (TMP) to be non-decreasing over time dur-
ing QRS-complex. This physiologically meaningful con-
straint reduces the solution space of the problem and reg-
ularizes the solution. However, this approach is compu-
tationally extensive and can become prohibitive as spatial
and temporal resolution of the problem increase. Here we
compare three distinct options to reduce the computational
load: downsampling the measurements in time, downsam-
pling the measurements after filtering with an algorithm
based on principal component analysis and non-linearly
interpolating the potentials with a spline-based method.
The data used were simulated TMPs that were forward
propagated to the body surface in a densely sampled ge-
ometry. The resulting body surface potential simulations
were corrupted with noise and the inverse computed using
a much coarser mesh to take geometry errors into account.
The results indicate that reducing the dimension of the sig-
nal in time does not reduce the quality of the solutions
obtained, while the computational requirements decrease
considerably, especially for the spline method.

1. Introduction

Electrocardiographic Imaging (ECGI) is a technology
whose objective is to non-invasively image the electrical
function of the heart. That is, it reconstructs the electri-
cal potentials on the heart from the body surface potential
(BSP) measurements and a mathematical model of the vol-
ume conductor that relates them. Its purpose is to detect
abnormal behavior of the myocardial tissue, such as points
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of re-entry or ectopic beats, and has great potential as a
tool for pre-interventional planning in ablation procedures.
However, there are still some challenges to overcome. One
of them is the ill-posedness of the inverse problem, which
makes the solutions very sensitive to noise and requires
the inclusion of prior knowledge to stabilize them. All
ECGI methods introduce this prior in one way or another,
so it is perhaps best to impose physiologically meaning-
ful constraints. In this regard, Messnarz et al. introduced
a method to solve for transmembrane potentials (TMP)
that imposes a non-decreasing constraint on the solutions
[1]. The estimated potentials obtained with this method
are physiologically realistic and provide very good accu-
racy. However, the size of the problem grows quadratically
with the number of unknowns and soon becomes computa-
tionally infeasible due to memory and time requirements.
Therefore, there is a need to reduce the dimensionality of
the problem for it to become practical. The dimension of
the problem can be reduced in two ways: space and time.
Reduction in the latter is possible due to the quasi static as-
sumption, that states that the BSP at a time point are only
affected by the instantaneous potentials on the heart. Thus,
it is possible to reduce the number of temporal samples
without affecting their inverse solutions.

In this work, we compare three dimensionality reduction
strategies in time: straight downsampling, linear interpola-
tion based on the SVD and a non-linear interpolation with
splines. We use them in conjunction to the inverse method
by Messnarz et al. and analyze their performance in terms
of the solution quality and computational time for multiple
sizes of the temporal space.

2. Methods

All the methods compared in this work can be decom-
posed in a three block pipeline: a dimensionality reduction
step, an inverse solver and a temporal reconstruction of the
inverse solutions.

The common block in all methods is the inverse method,
which is the method that Messnarz et al. introduced in
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[T]]l. This method solves the least squares problem in with
a non-decreasing constraint in time on the TMP:

miny(t) - Az (t)[[3 + Az ()13

s.t. x(t+1) > z(t)
2(1) > —85mV

2(T) < 20 mV.

ey

Here x(t) and y(t) are the TMP and the ECG measure-
ments at times ¢ € [1,...,7T], and A is the forward ma-
trix that models the volume conductor. This corresponds
to a quadratic problem with a linear constraint which can
be solved using CVX, a freely available software to solve
convex optimization problems [2,3]].

The first and last blocks in the processing pipelines are
determined by the temporal dimensionality method: tem-
poral downsampling, principal component analysis (PCA)
filtering with downsampling and spline interpolation.
Temporal downsampling:

This method consists of temporal decimation of the signal.
We evaluated this simple approach to reduce the number
of samples in time with downsampling rates (R) of 1, 1/2,
1/5 and 1/10. This method yields inverse solutions whose
size is M = T * R, for measurements with 7' time sam-
ples and spatial resolution on the heart of M nodes. Af-
ter computing the inverse with the decimated samples, we
reconstruct the complete temporal sequence with linear in-
terpolation of the missing time instances.

PCA:

This approach is similar to the method from Huiskamp and
Greensite to solve the inverse problem [4]]. It consists in a
linear deconvolution in time of the signal using its prin-
cipal components — i.e. the eigenvectors of its covariance
matrix. Ideally, we would have solved the inverse prob-
lem on a subspace defined by the most important principal
components as in [4]. However, this approach did not lead
to satisfactory results. We believe, that this was due to a
basic assumption of the method which expects the signal
to be separable in space and time, which does not hold for
the TMP. Instead, we used the projection on the principal
components as a filtering step similar to principal compo-
nent analysis (PCA) filtering [5]]. For all simulation cases,
we set the truncation rank to be 40, which was determined
to deliver the best results when evaluating with the consid-
ered setups. After filtering, we downsampled the measure-
ments in time as previously described (R = 1,1/2,1/5
and 1/10). As with the pure donwsampling approach, to
reconstruct the complete temporal sequence we linearly in-
terpolate the missing time instances. The objective of this
pre-filtering step is twofold: one, improve the inverse so-
lutions with the reduction of noise and, two, reduce the
computational time of the inverse method with faster con-
vergence to the solution.
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Figure 1: Correlation between true and estimated activa-
tion times. Each image contains the results of a dimen-
sionality reduction method. Within each image columns
show results of a single simulation (for both geometries)
and rows show the different downsampling rates or num-
ber of knot points.

Spline interpolation:

This is a non-linear dimensionality reduction that uses
spline interpolation to characterize the evolution of the
signal in time [6]. This approach has the advantage
that the parameters that are used in the interpolation (the
knot points) are themselves potential distributions on the
heart and thus they can be used as an input of an inverse
method. Moreover, since the ordering of these knot points
preserves the temporal ordering of the signal, the non-
decreasing constraint remains a valid assumption in the in-
verse method. We evaluated this non-linear interpolation
for 6, 12, 24 and 48 knot points. Finally, since the in-
verse solutions obtained are the equivalent knot points on
the heart, we reconstruct the complete temporal sequence
with the interpolation learned during the spline fitting on
the measurements.

3. Experiments and Results

We tested each inverse pipeline described in[section 2Jon
a dataset composed of two high resolution realistic torso
geometries with multiple simulations of heart activations.
Both geometries contained skeletal muscles, lungs, ventri-



cles with intracavitary blood, spleen, stomach, kidneys and
liver as inhomogeneities.

For these geometries, we simulated ventricular ectopic
activation sequences at different heart locations (3 and 8
locations per geometry respectively) with a rule-based cel-
lular automaton. Then, we synthetically forward propa-
gated the TMP of each simulation using a forward matrix
obtained from the high resolution geometries in order to
generate realistic BSP. The calculations of BSP were done
with the finite-element method (FEM). For the inverse cal-
culations we coarsened the meshes and added AWGN cor-
responding to SNR= 30dB to the BSP. For the first geome-
try we adopted the transfer matrix (which was also respec-
tively coarsened). For the second geometry we calculated
it with boundary element method (BEM) assuming homo-
geneous volume conductor.

For every simulation setup, the problem was solved
using all three dimensionality reduction methods. From
each solution we computed the activation times with a
method that calculates the maximum dv/dt of the poten-
tials weighted with the spatial gradient. Afterwards, we
smoothed the resulting activation times with the method
described in [6]] to reduce errors created due to overly
smooth TMP solutions. We determined the position of the
first activation as the node with earliest estimated activa-
tion time.

The tests of each downsampling method were done in
Matlab (12-Core Intel Xeon ES, 2.7 GHz processor and 64
GB memory).

Finally, we validated the inverse solutions in terms of
the correlation between true and estimated activation times
and the error in localization of the first activation on the
heart. To evaluate the computational load, we stored the
time it took to compute each inverse solution.

The results of the different methods are shown in the
following figures. shows the correlation of the
activation times and shows the localization error
of the point of first activation on the heart. The computa-
tion time of the inverse methods is shown in[Figure 3|

4. Discussion

Overall, the inverse algorithm by Messnarz ef al. per-
forms well in reconstructing the TMP on the heart. And,
as the high correlation in activation times shows, the tem-
poral pattern of most solutions captures the true activation
on the heart. With the exception of three simulations —
one in the first geometry and two in the second — where
the correlation in activation times is much below 1. These
correspond to simulations with an ectopic beat around the
septal area, which has always been shown to be a challenge
for the ECGI methods.

The error in localization of the first activation shows
more varied results. In this case, there seem to be three
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Figure 2: Localization error of first activation on the heart.
Each image contains the results of a dimensionality reduc-
tion method. Within each image columns show results of a
single simulation (for both geometries) and rows show the
different downsampling rates or number of knot points.

type of results: simulations that do well (err < 20mm),
simulations that have somewhat increased error (20 <err<
35 mm) and simulations that fail to detect the first activa-
tion (err> 35 mm). The high variability of the results,
is probably linked to the non-linearity introduced with the
min operator in the search of the first activation, which is
sensitive to small errors in the estimation of the activation
times. These small post-processing errors are most likely
to have a bigger impact for the second geometry, which
is coarser than the first one. So, it explain the increased
localization error in the group with 20 <err< 35 mm.

Comparing across temporal downsampling methods, it
seems that the three approaches provide similar results.
Correlation between true and estimated activation times is
high for results of simulations starting on the free walls
and worse for simulations starting around the septum. Al-
though the localization error shows quite some variability,
it does not appear to have any pattern of improvement for
either method.

The factor that does make a difference across different
downsampling methods is computational time, shown in
Since this inverse method is a quadratic pro-
gram with linear constraints, its computational burden in-
creases exponentially with the number of unknowns and,
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Figure 3: Average computational time for all downsam-
pling methods and both geometries. Blue lines show re-
sults for regular downsampling, red lines for PCA filtering
and green lines for the splines interpolation. Lines with "x’
show results for geometry 1 and "o’ for geometry 2.

with it, the computational time. Therefore, it is to be ex-
pected that the method with smallest temporal dimension,
the spline interpolation, requires considerably less compu-
tation time than the other downsampled methods. That
is especially the case when using 12 knot points, which
takes less computation time than the other dimensionality
reduction methods and slightly outperforms them. Another
noticeable difference is between downsampling and PCA-
filtering methods. Even though for those methods the num-
ber of unknowns is the same for every rate of reduction,
PCA-filtering computes the solutions somewhat faster and
attains a speedup of an hour for the most demanding in-
verses.

5. Conclusions

The inverse method by Messnarz et al. provides good
solutions for the TMP on the heart. However, it is com-
putationally demanding and requires of dimensionality re-
duction techniques for it to be practical.

We have evaluated three temporal dimensionality reduc-
tion methods in terms of their capacity to reduce this com-
putational burden while preserving the quality of the so-
lutions. In this study we have not found any meaningful
difference among their solutions. For most of the simu-
lations the activation times have high correlation with the
true solution and the localization of the first activation does
not show particular improvement in any particular method.
However, the computation times do indicate that the spline
interpolation is much faster than the rest and that in case
of using a decimation method, it is preferable to filter the
signals to reduce computational load.

In this study we have also observed high variability in
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localization of the first activation, which is sensitive to
small errors in the estimation of activation times. It re-
mains future work to study more robust methods to detect
the location of the initial activation on the heart.
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