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Abstract

In this paper we study the correlation of respira-
tion,heartbeat and blood pressure signals in 3D space us-
ing phase coupling. To the best of our knowledge, it is
the first time that the correlation of these signals is inves-
tigated in 3D space. We produce 2D and 3D phase plots
and examine phase coupling in all cases. We calculate
the mutual information which is a widely used metric for
estimating such correlations between two signals and the
slopes of the 2D phase plots. For examining signals in
3D space we compute the multivariate mutual information.
The multivariate mutual information is not a simple gener-
alization of mutual information and reveals different infor-
mation detecting the correlation among all three examined
signals. Additionally to the common metrics for signal syn-
chronization, we examined the use of the gradient, in order
to extract and quantify the relations as depicted in the 3D
plots.

Results showed us a stronger correlation between blood
pressure and heartbeat signals and a relatively small cor-
relation between respiratory and heartbeat signals, as well
as between respiratory and blood pressure signals. Also,
a very interesting observation is the strong correlation
among all three signals which is very clear from the 3D
phase plots and is also verified from both multivariate mu-
tual information and the gradient.

1. Introduction

In coupled oscillating systems, synchronization means
presence of certain relations between their phases and fre-
quencies. Synchronization (sometimes referred to as phase
locking or coupling) is widely used in experimental studies
and in the modeling of interaction between different phys-
iological systems showing oscillating behavior [1],[2].

Around millennium and by the emerge of stochastic dy-
namics the analysis of the human heart function incorpo-
rated the ideas of multifractal criticality [3] and phase tran-
sitions of a dynamical system [4]. In [4] the phase transi-
tions of the human heart is studied revealing clear phase

transitions between sleep and resting.
In this paper we study the phase coupling between

breath, heart and blood pressure and investigate for the first
time the relation among all three of them. We also use
the concept of mutual information (MI) and the gradient to
verify our conclusions.

The rest of the paper is structured as follows: In sec-
tion II we describe the data and the methods used through-
out this paper. In section III we study the phase coupling
between breath, heart and blood pressure and the relation
among all three of them. Finally, in section IV we summa-
rize our conclusions.

2. Data and methods

We examined 20 records, 10 from young and 10 from
elderly subjects, of one minute length, from the fantasia
[5, 6] dataset. Also some observations are made for 10
minute length signals. The dataset consists of 40 record-
ings, 20 from young subjects (21 - 34 years old) and 20
from elderly (68 - 85 years old), all healthy. Each subgroup
includes equal number of men and women. All subjects re-
mained in a resting state in sinus rhythm during recording
while watching the movie Fantasia (Disney, 1940) to help
maintain wakefulness. The continuous ECG signals were
120 minutes long and digitized at 250 Hz. Each heartbeat
was annotated using an automated arrhythmia detection al-
gorithm, and each beat annotation was verified by visual
inspection. We didn’t examine all 40 records available in
the dataset, because only 20 of them had all the three sig-
nals we wanted to examine: breath, heart and pressure.

In order to study the heart in correlation to the blood
pressure and respiration we examine the phase coupling
between the heart rate variability (HRV) timeseries or
Electrocardiogram (ECG) signal, the blood pressure signal
(BP) and the respiratory signal (RESP), for each subject,
by estimating the phases of all signals.

Since HRV is an inter-event timeseries, we can consider
the time interval between successive R peaks as a one cycle
from the cardiac oscillator. Then, we estimate the phase of
each HRV timeseries. A quite efficient technique is pro-
posed in [7] in which a Poincare map (stroboscopic map)
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is constructed from each HRV timeseries, assuming that
each R-R interval corresponds to one complete cardiocy-
cle. Therefore, the phase increases exactly 2π during each
beat. At the moment t the phase is given by:

ϕ(t) = 2πk + 2π
t− tk

tk+1 − tk
(1)

where tk is a point of the examined timeseries so that tk ≤
t < tk+1.

In the case of ECG, blood pressure and respiratory sig-
nals, we estimate the instantaneous phases directly, by ap-
plying the Hilbert transform. So, we estimate the phase
according to the formula:

ζ(t) = s(t) +H(s(t)) = A(t)eiϕ(t) (2)

where s(t) is the original signal, H(s(t)) the Hilbert trans-
form of s(t) and ϕ(t) the instantaneous phase, and ζ(t) is
the analytic representation of s(t).

After calculating the phases of ECG, BP, RESP and
HRV signals, we produce a 3D phase plot of RESP, BP,
HRV (or ECG) and all 2D plots that show the phase cou-
pling between RESP-HRV (or RESP-ECG), RESP-BP and
BP-HRV (or BP-ECG). Next, we estimate the mutual in-
formation which has been proved to be quite efficient [8]
for detecting coupling. Also we estimate the mutual in-
formation of the three signals, which is also known in the
literature as multivariate mutual information (MMI) [9].
These measures are applied in symbolic sequences only.
In order to apply them in our timeseries, after calculating
the phases for all signals, we convert them into a series of
a 20-letters alphabet.

The mutual information, I(X;Y ), of two discrete ran-
dom variables X and Y is defined as:

I(X;Y ) = H(X)−H(X/Y )

where H(X) is the entropy of X and H(X/Y ) is the en-
tropy of X conditioned on Y, known as the conditional
entropy. We note that mutual information is nonnegative
and symmetric.

For three variables, X,Y, Z the mutual information
(MMI), I(X;Y ;Z), is given by:

I(X;Y ;Z) = I(X;Y )− I(X;Y/Z)

where I(X;Y ) is the mutual information between X and
Y and I(X;Y/Z) is the conditional mutual information
between variables X and Y given Z.

We note that the mutual information for three variables,
I(X;Y ;Z), can be positive, negative, or zero and is sym-
metric. Positive mutual information indicates that vari-
able Z inhibits some of the correlation between X and Y ,
whereas negative mutual information indicates that vari-
able Z facilitates or enhances the correlation between X

and Y . Finally, the mutual information is zero if and only if
all the variables are statistically independent of each other.

Next we wanted to find a number that would represent
each 3D plot. For that reason we decided to use the gra-
dient. The gradient of a function f(x1, . . . , xn) is denoted
∇f and calculated from

∇f = (
∂f

x1
, . . . ,

∂f

xn
)

where ∂f
xi

is the partial derivative of f with respect to vari-
able xi, i = 1, . . . , n.

So we calculated the absolute value of the slopes for
each 2D plot, then we took the mean value of those slopes
and found a number. These numbers gives us every time a
component of the gradient for the 3D plot. Then, because
the gradient is a vector, we calculated the Euclidean norm
of the gradient and took the number that would represent
our 3D plot. We note that because sometimes these num-
bers were very big we used a threshold. Finally, we used
t-test and calculated the p-value for the gradient in order to
see if we can separate young from elderly subjects.

3. Results

3.1. Mutual information

In Fig.1 and Fig.2, we can see a 3D phase plot among
RESP-BP-HRV and the phase coupling between RESP-
HRV, RESP-BP and HRV-BP and in Fig.3 we can see simi-
lar plots but instead of HRV we use the ECG signal. Please
note that the plots in Fig.1 and Fig.2, where the phases
for RESP and BP are calculated from equation (2) and the
HRV phase from equation (1), are clearer than the ones in
Fig.3, where all phases are calculated from equation (2).

We calculated the mean value of the MI and the MMI,
of the 20 subjects and the results are shown in table 1. Also
in table 2 we give the MI of the signals in Fig.1, Fig.2 and
Fig.3.

Table 1. Mean MI between phases of RESP, BP, HRV (col-
umn A) and RESP, BP, ECG (column B) for one minute
length signals

MI A B
RESP-HRV 0.1543 -
RESP-BP 0.1329 0.1329
BP-HRV 1.4477 -
RESP-ECG - 0.2581
BP-ECG - 0.4812
MMI -0.3155 -0.4849

Observing the phase coupling in Fig.1, Fig.2 and Fig.3
and comparing the MIs from table 2 we conclude that:
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Figure 1. 3D and 2D phase plot for record f2y04 from the Fantasia database of one minute length. Phases for RESP and
BP are calculated from equation (2) and the HRV phase from equation (1)
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Figure 2. 3D and 2D phase plot for record f1y01 from the Fantasia database of one minute length. Phases for RESP and
BP are calculated from equation (2) and the HRV phase from equation (1)
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Figure 3. 3D and 2D phase plot for record f1y01 from the Fantasia database of one minute length. Phases for RESP, BP
and ECG are calculated from equation (2)

Table 2. MI for signals in figures 1, 2 and 3 of one minute
length

MI Fig. 1 Fig. 2 Fig. 3
RESP-HRV 0.1163 0.1881 -
RESP-BP 0.1612 0.1147 0.1147
BP-HRV 0.8751 1.2998 -
RESP-ECG - - 0.1530
BP-ECG - - 0.6078
MMI -0.5330 -0.3219 -0.3724

• MI of RESP-HRV or RESP-ECG and RESP-BP tends
to zero when the lines in the plot of the phase coupling
between RESP and HRV (or ECG) tend to be vertical.
• MI of BP-HRV or BP-ECG grows when the lines in the
plot of the phase coupling between BP and HRV (or ECG)

have smaller slopes.
• MI of BP-HRV and BP-ECG is greater than the other
two MIs of the same subject, which is something expected
from the physiology. This can also be verified from the
plots in all figures, since the phase coupling between BP
and HRV (or ECG) has lines with smaller slopes than the
other 2D plots of the same subject and reveals a stronger
phase coupling.

Also a very interesting observation is that the 3D plots in
Fig.1, Fig.2 and Fig.3, seem to reveal a strong interaction
among the three signals which is something that cannot be
observed from 2D plots. This can also be verified from
the multivariate mutual information. We can see that in the
last row of table 1 and table 2, the MMI between the three
signals is negative, which means that any of these signals
facilitates or enhances the correlation between the other
two.

The MMI stays negative even if we use 10 minute or 30
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minute length signals.

3.2. Slopes and Gradient

We applied t-test and calculated the p-value (signifi-
cance level=5%) for the gradient in the 3D case and for
the slopes in the 2D case.

For one minute length signals depending on the thresh-
old we used, most of the times we can separate young from
elderly subjects for the BP-HRV-RESP case (Fig.4) and
some times for the BP-HRV case (0.04 ≤ p − value <
0.42) but not for the other cases. Note also that the desired
results are achieved only when the HRV signal is used.
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Figure 4. P-value for the gradient for the BP-HRV-RESP
case (one minute length signals)

The results are even better when we used 10 minute
length signals because in the BP-HRV-RESP case we can
separate young from elderly subjects regardless from the
threshold. Depending on the threshold we can separate
young from elderly subjects for the BP-HRV (0.05 ≤
p − value < 0.14) and the RESP-HRV case (0.04 ≤
p − value < 0.18). Note also that the desired results are
achieved only when the HRV signal is used.

4. Conclusion

In this paper we study the correlation of respiration,
heart and blood pressure. For this purpose we produced
2D and 3D phase plots and used the concept of the mu-
tual information, the multivariate mutual information, the

slopes and the gradient. Results showed us a stronger
correlation between blood pressure and heart and a rel-
atively small correlation between respiration- heart and
respiration-pressure. Also a very interesting result is that
there is a strong correlation among the three signals which
is very clear from the 3D phase plots and it is also verified
from multivariate mutual information and the gradient. 3D
phase plots and indices are used for the first time, studying
the phase coupling of these signals.
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