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Abstract

As part of the 2015 PhysioNet/CinC Challenge, this
work aims at lowering the number of false alarms, which
are a persistent concern in the intensive care unit. The
multimodal database consists of 1250 life-threatening
alarm recordings, each categorized as a bradycardia,
tachycardia, asystole, ventricular tachycardia or ventric-
ular flutter/fibrillation arrhythmia. Based on the quality
of available signals, heart rate was either estimated from
pulsatile waveforms (photoplethysmogram and/or arterial
blood pressure) using an adaptive frequency tracking al-
gorithm or computed from ECGs using an adaptive math-
ematical morphology approach. Furthermore, we intro-
duced a supplementary measure based on the spectral pu-
rity of the ECGs to determine if a ventricular tachycardia
or flutter/fibrillation arrhythmia has taken place. Finally,
alarm veracity was determined based on a set of decision
rules on heart rate and spectral purity values. Our method
achieved overall scores of 76.11 and 85.04 on the real-time
and retrospective subsets, respectively.

1. Introduction

High false alarm (FA) rates are a persistent concern in
the Intensive Care Unit (ICU) [1]. Limited performance of
ICU monitoring devices results in the desensitization of the
medical staff and longer response times, which can have
severe repercussions. In addition, the noise disturbances
that are induced may lead to sleep deprivation for the pa-
tients. Several studies have been conducted to reduce the
number of FAs, which are mainly caused by artifacts and
short fluctuations in the signals. For instance, in [2], a re-
cursive two-stage median filter was used for the tracking of
heart rate (HR) trends and the removal of artifacts. The re-
sulting proportion of true alarms increased from 12% to
49% during postoperative haemodynamic monitoring of
cardiac patients. Another possible course of action to fa-
cilitate the rejection of FAs is to analyze cardiovascular
signals from independent sources. For example the arte-
rial blood pressure (ABP) waveform was employed in [3]

to suppress FAs for different types of arrhythmia. In their
study, an overall FA suppression of 59.7% was achieved
while preserving the true alarm rate, except in case of ven-
tricular tachycardia. Since the quality of the waveforms
is a major issue in most cases, the development of signal
quality indexes (SQIs) can contribute to the improvement
of the decision making process [4]. For instance, the va-
lidity of an alarm can be determined on the basis of the
ABP waveform when its SQI exceeds a certain threshold
[5]. Another important issue in this context is the pro-
cessing of ventricular arrhythmia alarms. Previous stud-
ies have pointed out the challenges linked to the classifi-
cation of ventricular tachycardia and ventricular fibrilla-
tion episodes [3, 6, 7]. In these cases, accurate HR values
are not sufficient to suppress FAs and additional features
are required. For example, an approach based on wavelet
transform was investigated in [7] to reduce the number of
false ventricular tachycardia alarms. An FA suppression of
21% on the PhysioNet MIMIC II dataset was achieved.

This study aims at reducing the incidence of FAs in the
ICU. Our approach relies on robust adaptive signal pro-
cessing techniques in order to extract accurate HR val-
ues from the ECG, photoplethysmogram (PPG) and ABP
waveforms. Furthermore, in case of ventricular arrhyth-
mia, we use a supplementary measure based on the spec-
tral purity of ECGs in order to investigate the veracity of
the alarm.

2. Methods

For this challenge, a multimodal database with various
life-threatening events was used. More details about this
database can be found in [1]. Based on the available chan-
nels, various features were extracted and employed to de-
termine whether a true arrhythmia has taken place when
the alarm was triggered. Figure 1 illustrates the block dia-
gram of our method. The features of interest were obtained
using the following techniques.

HR estimation using ECG: Observations of ECG chan-
nels in the training set indicated that the available ECG
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Figure 1. The general framework to determine the validity of an alarm.

waveforms present various perturbations such as clipping
of the QRS complexes, large baseline drift modulation and
high muscle activity noises. Therefore, a robust heartbeat
detection algorithm is needed in order to have a reliable FA
suppression. To this end we used a QRS complex extrac-
tion algorithm, called AMM, proposed in [8]. Authors pro-
pose a mathematical morphology approach with an adap-
tive structuring element. In this approach, the structuring
element is continuously updated based on morphological
features extracted from the detected QRS complexes. At
the same time, AMM avoids excessive use of arbitrary
thresholds, and is robust against baseline drift and other
perturbations. Furthermore, it offers low computational
cost in the order of O(n). Figure 2, demonstrates the per-
formance of AMM on a low quality signal from the train-
ing dataset.
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Figure 2. Performance of AMM on a tape from the train-
ing set.

ECG spectral purity index: Ventricular arrhythmia lead
to morphological changes on QRS complexes. It can be
observed that ECGs become closer to a sinusoid during
these episodes, due to a widening of the QRS complexes.
In order to quantify this behavior, the spectral purity index
(SPI) [9] was used. It is defined as the running squared
second-order spectral moment divided by the product of
the running total power and fourth-order spectral moment.
This measure, which ranges between zero and one, indi-
cates how well the signal of interest can be described by
a single frequency. In this study, the SPI of the available
ECG channels was measured in case of ventricular tachy-
cardia and ventricular flutter/fibrillation alarms. Higher
SPIs were expected in case of true arrhythmia. ECG sig-
nals were first down-sampled to 35 Hz and smoothed using
a 5-sample moving average filter. Then, a 2-second sliding
window was used to estimate spectral moments in time do-
main, as proposed in [10]. Figure 3 illustrates an example

of the SPI during a true ventricular tachycardia alarm.

Figure 3. SPI during a true ventricular tachycardia
episode.

PPG and ABP signal quality assessment: In order to as-
sess the quality of the PPG and ABP signals, we used re-
spectively the ppgSQI and the jSQI algorithms, provided
for this challenge [1]. Based on the detected heartbeats,
these algorithms compute the features needed to estimate
signal quality. Heartbeats were detected using the algo-
rithm described in [11]. The resulting signal quality in-
dexes (SQIs), that ranged between zero and one, deter-
mined whether PPG/ABP waveforms should be analyzed.

HR estimation using PPG and ABP: This paper pro-
poses an HR estimation method based on an adaptive fre-
quency tracking algorithm. The basic algorithm, described
in [12], is an oscillator based mean square error band-pass
filter (OSC-ANF). In this algorithm, the central frequency
of the filter is constantly updated to follow the instanta-
neous frequency of the signal. The underlying adaptive
mechanism involves a cost function that is derived from
the oscillator equation. This OSC-ANF algorithm was
extended to multi-signal (OSC-ANF-W) [13], in order to
track the common frequency component present in multi-
ple input signals. More specifically, all signals are filtered
by an adaptive band-pass filter in order to calculate indi-
vidual frequency estimates. Then, a global frequency es-
timate is computed by weighting individual estimates. In
addition, the OSC-ANF-W was further expanded to work
in the complex domain (OSC-ANFc-W) [14], as it was
empirically observed that using the complex domain ap-
proach improved the frequency tracking on some signals.
In this study, an 8th-order Butterworth low-pass filter with
a cutoff frequency of 5 Hz is first applied to the PPG sig-
nals. Then, the baseline of PPG and ABP signals is re-

278



moved by subtracting the mean of the upper and lower en-
velopes that are estimated using maximum/minimum de-
tection on a sliding window. Finally, in case the SQIs of
the PPG/ABP signal reach a certain threshold, the OSC-
ANF-W/OSC-ANFc-W algorithms are used to compute
the instantaneous HR. To have a more robust estimation,
smoothed versions of the input signals, by means of mov-
ing average of length l, are also fed to the algorithm. Fur-
thermore, the parameters required for adaptive frequency
tracking were selected in order to optimize HR estimation.
These parameters are summarized in Table 1, where fre in-
dicates the re-sampling frequency, β is related to the band-
width of the adaptive band-pass filter and δ is a forgetting
factor.

Arrhythmia Algorithm fre [Hz] l [samples] β δ
Asystole OSC-ANFc-W 15 3,5,7,11 0.8 0.8
Extreme Bradycardia OSC-ANFc-W. 15 3 0.87 0.87
Extreme Tachycardia OSC-ANF-W 35 5,7 0.89 0.9
Ventricular Tachycardia OSC-ANF-W 35 7 0.89 0.9

Table 1. Algorithms and selected parameters for HR esti-
mation using PPG and/or ABP waveforms.

Arrhythmia alarm processing: Each type of arrhyth-
mia was processed separately and various features derived
from HR and SPI values were extracted. Details about the
waveforms, the extracted features, the windowing and the
thresholds are provided in Table 2. PPG/ABP waveforms
were processed when the corresponding SQI was above
0.6, except for extreme bradycardia alarms in which cases
this threshold was set to 0.5.

3. Results

A hidden test set of 500 records (extended by 250
records for phase II) was used to assess the performance
of the presented method. Details about the distribution of
alarms and the scoring can be found in [1]. Tables 3 and
4 display the results obtained for the phases I and II of
this challenge, respectively. Our method achieved an over-
all score of 72.95 in the first phase, with an overall true
positive rate (TRP) of 94% and an overall true negative
rate (TNR) of 71%. After some minor modifications, bet-
ter scores were reached in the second phase. In this case,
real-time and retrospective scores of 76.11 and 85.04 were
reported, with TNRs of 77% and 80%.

4. Discussion

Accurate HR values were extracted from PPG and ABP
signals using adaptive frequency tracking. Importantly,
as the use of heartbeat detection techniques was avoided,
our method allowed us to have a robust HR estimation for
moderate quality signals, i.e. SQIs above 0.5 or 0.6. This
makes our approach attractive because the existing meth-

Arrhythmia TPR TNR Score
Asystole 92% 78% 76.42
Bradycardia 96% 66% 73.53
Tachycardia 96% 60% 80.00
Ventricular Flutter/Fibrillation 83% 88% 79.55
Ventricular Tachycardia 93% 65% 67.38
Real-time 93% 65% 68.15
Retrospective 95% 77% 77.82
Overall 94% 71% 72.95

Table 3. Results for phase I.

Arrhythmia TPR TNR Score
Asystole 83% 88% 81.44
Bradycardia 100% 71% 82.47
Tachycardia 97% 60% 86.18
Ventricular Flutter/Fibrillation 89% 94% 87.10
Ventricular Tachycardia 94% 72% 72.75
Real-time 94% 77% 76.11
Retrospective 99% 80% 85.04

Table 4. Results for phase II.

ods involving ABP/PPG heartbeat detection require good
quality waveforms, i.e. SQI around 0.9 [1, 5]. We de-
cided to mostly rely on ECG analysis in case of ventric-
ular arrhythmia because these arrhythmia display a more
pronounced signature on ECG than on the pulsatile sig-
nals. Furthermore, spectral purity of the ECG seems to
be a very promising candidate to characterize the mor-
phological changes related to ventricular arrhythmia. To
the best of our knowledge, SPI is used in this context for
the first time. We decided to keep the decision-making
process straightforward by setting physiologically inter-
pretable thresholds on the extracted features. However,
more elaborated approaches such as machine learning or
fuzzy logic techniques could be employed to improve the
performance. It must be noted that the heartbeat detec-
tion on ECG signals was helpful in the elimination of false
asystole and bradycardia alarms. A limitation of this study
lies in the absence of quality assessment for ECG signals
which could help in improving the overall robustness of
the proposed method. Finally, it should be mentioned that
components of our approach can be implemented in real-
time/online scenarios at a low computational cost. This
makes our method suitable and efficient in the reduction of
FAs, as confirmed by the overall TNRs of 77% and 80%.

Acknowledgements

This study was performed in the framework of the Nano-
Tera initiative supported by the Swiss National Science
Foundation (SNSF).

References

[1] Clifford GD, Silva I, Moody B, Li Q, Kella D, Shahin A,
Kooistra T, Perry D, Mark RG. The PhysioNet/Computing

279



Table 2. Arrhythmia alarm processing.
Conditions toArrhythmia Type Waveforms Algorithms Windowing Extracted features
suppress alarm

5 sec. before alarm
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LDA 3
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>60 [bpm]
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