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Abstract 

Assessing respiratory and cardiovascular system 
coupling can provide new insights into disease 
progression, but requires accurate analysis of each 
signal. Respiratory waveform data collected during 
spontaneous breathing are noisy and respiration rates 
from long term physiological experiments can vary over a 
wide range across time. There is a need for automatic 
and robust algorithms to detect breathing peaks in 
respiration signals for assessment of the coupling 
between the respiratory and cardiovascular systems. We 
developed an automatic algorithm to detect breathing 
peaks from a respiration signal. The algorithm was tested 
on respiration signals collected during hemorrhage in a 
conscious ovine model (N=9, total length = 11.0h). The 
breathing rate varied from 15 to as high as 160 
breaths/min for some animals during the hemorrhage 
protocol. The sensitivity of the algorithm to detect 
respiration peaks was 93.7% with a precision of 94.5%. 
The developed algorithm presents a promising approach 
to detect breathing peaks in respiration signals from 
spontaneously breathing subjects. The algorithm was able 
to consistently identify breathing peaks while the 
breathing rate varied from 15 to 160 breaths/min. 

1. Introduction

Continuous monitoring of respiratory activity is 
important to understand disease progression [1, 2] and is 
performed via a multitude of methods [3].  Identifying 
breathing peaks in respiration waves is a critical first step 
in respiratory activity monitoring and can be done using 
conventional peak detector algorithms [4]. However, 
respiration waves from spontaneous breathing subjects 
are noisy, which gives rise to erroneous peak detections 
when noise peaks are present [5] causing high false alarm 
rates. Critical conditions can result in respiration rates 
beyond normal expected limits. Respiration rate from 
long term measurements and under changing 
physiological conditions can vary over a wide range 

across time, which presents the need for automatic and 
adaptive breathing peak detection algorithms. We 
developed an automatic algorithm to detect breathing 
peaks from noisy respiration signals with a varying 
respiration rate over time. To demonstrate our approach, 
we apply the algorithm to a set of respiration signals 
collected in conscious ovine undergoing hemorrhage 
during spontaneous breathing. 

2. Algorithm

The breathing peak detection algorithm consists of 
several parts. The preprocessing consists of a band pass 
antialiasing filter, power line noise filter, baseline wander 
correction, and down sampling. A 10s moving window 
which slid along the signal in 5s steps identified the 
frequency peak (fi) between 0.2-5Hz for the window 
using the fast Fourier transform. The window is then 
preprocessed with a low pass filter with the cutoff 
frequency of fi + 1Hz.This low pass filtered signal is then 
down sampled to 20Hz. The distribution of fi was 
constructed using fi over all 10s windows of signal. To 
remove the baseline wander, the signal is then filtered 
through a high pass filter where the cutoff frequency is 
the 2.5th percentile of the distribution of fi.   

The 10s low pass filtered and baseline wander 
corrected signal is then applied to the breath detection 
algorithm, presented as a flow diagram in Fig.1. At each 
sample i, signal slope (Si) and the slope at proceeding 
sample (Si+1) was calculated. Depending on the sign of 
the slope at sample i and i+1, the sample is identified to 
be a potential valley (Si<0 and Si+1>0), potential peak 
(Si>0 and Si+1<0) or none of the above. The following 
state variables were used to keep track of immediate past 
state of the signal; valley detected (VD): before the 
current sample a valley following a breathing peak was 
detected, peak detected (PD): before the current sample a 
breathing peak was detected, height threshold (HT): 10% 
of the mean height of previous 100 breathing peaks, depth 
threshold (DT): 10% of the mean depth of the previous 
100 valleys, baseline (BL): mean of the samples from 
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previously detected valley to the current sample. Using 
these state variables an adaptive thresholding criterion 
was developed to validate whether the detected peak is a 
true breathing peak. The algorithm starts with following 
initial conditions; height threshold (HT) = 0.1, depth 
threshold (DT) = 0.1, baseline (BL) = 0, valley detected 
(VD) = false, peak detected (PD) = false. When a valley 
is detected it is flagged as a true valley preceding a 
breathing peak (VD = true) if the following are met: if a 
valley was not detected previously (VD = false), value at 
current sample is less than the baseline (yi < BL), depth of 
the current valley is greater than 10% of the mean depth 
of the previous 100 valleys (valley depthi > DT) and the 
Mahalonobis distance of the current valley depth to the 
distribution of past 100 valley depths is less than 20. 
When a peak is detected it is flagged as a true breathing 
peak (PD = true) if the following are met: if a peak was 
not detected previously (PD = false), but a valley was 
(VD = true), value at current sample is greater than the 
baseline (yi > BL), height of the current valley is greater 
than 10% of the mean height of the previous 100 peaks 
(peak heighti > HT), and the Mahalonobis distance of the 
current peak height to the distribution of past 100 peak 
heights is less than 20. If the current sample is neither a 
peak nor a valley, the sample is added to the baseline 
vector (b). Whenever a true peak is detected the height 
threshold (HT) is updated with the current peak height, 
and similarly when a true valley is detected the depth 
threshold (DT) is updated with detected valley depth. If 
the baseline vector contains samples for a time longer 
than 5s, the vector is reset and the algorithm is set to 
initial conditions as that indicates the signal segment is a 
noisy period or a flat line. The algorithm was 
implemented in MATLAB 2014b (The Mathworks, Inc., 
Natick, MA). 

3. Experimental Methods

The algorithm was tested on respiration signals 
measured using a resistive band placed around the thorax 
(fs=1,000 Hz, PowerLab; AD Instruments, Castle Hill, 
Australia) in a conscious ovine hemorrhage model (N=9) 
obtained from a previously reported experiment [6,7]. 
The hemorrhage experiment started with a 7min baseline 
period followed by 25ml/kg blood removal over 15min, 
post-hemorrhage period up to 15min and reinfusion 
period that included closed-loop fluid resuscitation to 
restore blood pressure. The total combined length of 
respiration signals across all hemorrhage experiments was 
11.0h with breathing rate varying from 15 to 160 
breaths/min. Breathing peaks on the respiration signals 
were annotated by a human expert.  

The algorithm was applied to the annotated respiration 
signals. A true positive was declared if a beat was 
detected within 200ms of a reference annotation. The 
result of applying the algorithm on the validation set was 

assessed by calculating sensitivity and precision. 
Sensitivity was defined as TP/TP+FN while precision as 
TP/TP+FP, where TP (true positive) is the number of 
peaks the algorithm correctly identified which are also 
members of the expert annotated breathing peak set, FP 
(false positive) is the number of peaks the algorithm 
incorrectly identified which are not members of the expert 
annotated breathing peak set, and FN (false negative) is 
expert annotated breathing peaks the algorithm failed to 
identify.   

Fig.1: Flow diagram of breath detection algorithm. The 
input is the ith sample from a 10s low pass filtered and 
baseline wander corrected segment.  

4. Results

Table 1 summarizes sensitivity and precision of the 
algorithm applied to respiration signals from each animal. 
The third column in Table 1 includes the minimum and 
maximum breathing rates during the recording period for 

Load sample 

Valley 
detected

? 

Peak 
detected

? 

Valid 
valley? 

Discard valley 

Valid 
peak? 

Accept 
breathing peak 

Add to baseline 

Go to next sample 

No Yes

Yes

No

No

Yes

Yes

No

298



each animal. Average sensitivity of the algorithm across 
animals was 93.7% with a precision of 94.5%.  Fig. 2 
demonstrate examples of breathing peak detection on 
signal segments of varying breathing rates, 45, 75, and 
120 breaths/min respectively. 

Animal Length 
(h) 

Breathing 
Rate Range 

(breaths/min) 

Se. 
(%) P (%) 

1 0.7 60 - 120 94.8 95.9 
2 1.1 40 - 100 93.5 92.7 
3 1.2 55 - 100 82.4 80.5 
4 2.1 35 - 100 91.2 92.5 
5 1.1 40 - 140 93.4 98.4 
6 0.9 30 -   40 99.1 99.2 
7 1.1 40 -   70 95.4 97.1 
8 1.0 15 -   70 96.4 96.3 
9 1.8 20 - 160 97.0 98.2 

Table.1: Sensitivity (Se) and precision (P) of the 
algorithm at each respiration signal. 

5. Discussion

Detecting breathing peaks in respiratory waveform 
data is important to accurately monitor breathing and 
assess coupling between the respiratory and 
cardiovascular systems; however, it can be erroneous in 
long term measurements from spontaneous breathing 
subjects due to noise, varying breathing rates over time, 
and motion artifacts. The algorithm presented in the paper 
indicates that by using an automated adaptive approach, it 
is possible to detect breathing peaks precisely over a wide 

range of breathing rates. 

Fig.3: False positives due to noisy segments in the 
respiration signal for animal 3. 

As shown on Table 1, the proposed algorithm 
performed comparatively poorly for animal 3. This is due 
to the large noisy segments in this respiration signal as 
shown in Fig.3. Possible improvement to avoid this 
occurrence would be to include rules based on the 
distribution of inter-breath-interval to determine valid 
peaks and valleys to improve the sensitivity and precision 
of the algorithm. As shown in Fig.3 the false positive 
detections have larger inter-breath-interval compared to 
the true positives and this feature can be used to remove 
false positive detections which occur due to noise. 
Distribution of inter-breath-interval can also be used to 
reduce false negatives which occur due a large breath 
amidst a sequence of smaller breaths as seen on Fig.2 

Fig.2: Examples of breathing peak detection on signal segments of varying breathing rates; (a) 45, (b) 75, and (c) 
120 breaths/min. 
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while disqualifying noisy peaks which has the same 
characteristic. 

Overall the developed algorithm presents a promising 
approach to detect breathing peaks in respiration signals 
from spontaneously breathing subjects. The algorithm 
was able to identify breathing peaks consistently while 
the breathing rate varied from 15 to 160 breaths/min and 
also in presence of noise and motion artifacts. The wide 
range of breathing rates in this study represents a 
physiological response to hemorrhage in the conscious 
ovine model. The most critical monitoring times may be 
during acute events when vital signs are highly dynamic, 
and physiological monitoring algorithms in these 
scenarios need to adapt to continuously changing 
conditions to provide accurate measurements. The 
presented algorithm accomplishes this by performing a 
series of checks on each potential peak or valley and 
updating thresholds based on the current signal state.  

One limitation to the set of data used to test the 
algorithm here is that low breathing rates (6-15 
breaths/min) that may occur in humans were not 
encountered in the conscious ovine model. Future studies 
will focus on validating the algorithm in human data 
using capnography as reference. 
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