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Abstract 

In this paper, three different algorithms (QRS 

amplitude, PCA and kernel PCA) were applied to the 

ECG signal to extract information of the respiratory 

activity. Features were then extracted from the 

respiratory activity and used to classify sleep apnoea 

episodes using an Extreme Learning Machine classifier.  

Data from the first 60 minutes of the 35 ECG signal 

recordings from the MIT PhysioNet Apnea-ECG database 

was used throughout the study. Performance was 

measured with leave-on-record-out cross validation. The 

fan-out number for the ELM classifier was varied 

between one and ten. 

The results showed that the performance of the PCA 

algorithm was equal to or outscored the other two 

algorithms at all fan-out numbers we explored. Its highest 

performance was an accuracy of 79.4%, a sensitivity of 

48.8%, and a specificity of 87.7% at a fan-out of ten.  

1. Introduction

Obstructive Sleep apnoea (OSA) is a common sleep 

disorder, accompanied by episodes of upper airway 

obstruction and interruptions in breath [1]. It may lead to 

serious health issues such as cardiovascular disease [2]. 

Thus, apnoea diagnosis and treatment is important for 

both the patient and society.  

Polysomnography (PSG) is the standard sleep test for 

apnoea diagnosis which records many signals during an 

overnight stay in a hospital. Sleep studies are expensive 

and patients may not sleep well due the attachment of 

wires and electrodes to the head, torso and limbs which 

can cause discomfort. Therefore, an ongoing research 

goal is to reduce the number of diagnostic signals and 

diminish the cost and invasiveness of sleep tests [3].  

Amongst the PSG signals, the ECG signal is favoured 

to detect sleep apnoea, as it is recorded easily and causes 

minimal sleep disturbance. The ECG signal is modulated 

by the anatomical movements of the heart and lungs 

during breathing [4]. Signal processing can be used to 

isolate the respiratory signal [5,6] and it has been termed 

the ECG-derived respiratory signal (EDR) in the 

literature. Therefore, respiratory information is available 

in unison with cardiac monitoring through a minimally 

invasive system [4]. 

In this paper, three different methods were 

implemented for EDR extraction including QRS 

amplitude, PCA, and kernel PCA (kPCA).  

2. Dataset

 The learning set ECG recordings from the MIT 

PhysioNet Apnea-ECG database were utilized. The data 

was obtained for 35 overnight ECG recordings (modified 

lead V2) from normal and obstructive sleep apnoea 

patients. The sampling rate was 100 Hz, with the learning 

set randomly sampled from a larger database of 70 

recordings from 32 subjects consisting 25 males and 7 

females. The first 60 minutes of 35 ECG signal 

recordings were employed as the input dataset for this 

study. Each 60 seconds of the data has been labelled as 

“normal” or “apnoea” by an expert [7,8].  

3. Preprocessing

The baseline wander of the ECG signal due to body 

position changes was removed before any further 

processing. This step was needed as sudden shifts in the 

signals baseline could have a large effect on the EDR. 

This was achieved by application of two median filters 

using windows of width 200ms and 600ms [9]. The QRS 

onset detection points provided with the database were 

used throughout the study. 

4. EDR Signal

ECG Derived Respiratory (EDR) signal is a 

modulatory signal on the ECG which affects the 

amplitude of ECG by the frequency equivalent to the 

breathing cycle. When the airflow flows in and out of the 

lungs during breathing, ECG electrodes on the chest can 

detect electrode displacement and the resulting electrical 

impedance variation in thoracic cavity [10]. 
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4.1. QRS amplitude 

The first method to extract the EDR was to calculate 

the area under each QRS complex between the onset 

point and onset plus 100 milliseconds [11]. The EDR 

estimate at each QRS point was set equal to the area. 

4.2. PCA 

Principal component analysis (PCA) allows decreasing 

the dimensionality of a multivariate signal by an 

orthogonal transformation. It finds the direction in which 

the data are more likely to spread out and the new 

direction values for the data are called the principal 

components (PCs) [12]. The PCs capture majority of the 

variance of the data by computing eigenvectors of the 

features’ variances. It has been shown that PCA can 

represent beat-to-beat variations in ECG features 

including R-peaks and QRS amplitude [13]. Thus, by 

detecting variation of the correlation between the signal 

features, the EDR signal is recognized as a modulatory 

signal changing the ECG beats [13]. This algorithm can 

be applied to any ECG feature. In this paper, QRS 

complex was chosen in order to be consistent with other 

EDR measurement methods to enable a reliable 

comparison. In brief, the PCA algorithm is as follows. 

a) A sliding window was applied to the ECG signals in

order to partition the signal into consecutive QRS 

complexes [13]. The length of the window is selected in a 

way to cover the whole QRS complex. In this study, a 

window of 250ms was chosen, as it completely extracted 

the QRS complexes through the signals. The window ran 

from the QRS onset -75ms to QRS onset +175ms. 

Therefore, if there are n QRS complexes, n windows 

covering each QRS complex will be available. 

b) Next,  n  QRS complexes were centered in a matrix of

   of which columns are the values of ECG signal in 

m sample points of each QRS complex [13],[14] and the 

rows are the number of QRS complexes: 

 ( )  [    ( )     ( )       ( )]      ( ) 
c) Then, the covariance of X(t) was measured resulting in

a     matrix: 
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d) Finally, the eigenvectors,     and eigenvalues,   , were 

computed of C and principal components (PC) were 

obtained: 

                                                          ( ) 

                                                           ( ) 

The principal components are linearly transformed 

from the signal beats by transformation coefficients of 

eigenvectors which represent the EDR signal [13]. Due to 

the fact that there is a significant correlation between 

ECG signal beats and a large variation in EDR signal, the 

first principal components are the most sensitive ones to 

respiration [13]. Thus, the first principal component was 

chosen as the EDR signal.  

4.3.    Kernel PCA 

In case of nonlinear patterns existing in the dataset, 

linear PCA may not recognize them and nonlinear kernel 

PCA can provide more information [15]. In kernel PCA, a 

nonlinear function,  (  ), is applied to the dataset and 

PCA is applied to the mapped space,  (  ) . The 

covariance matrix becomes [12], 
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Then, the eigenvectors and eigenvalues are computed, 
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In order to prevent mapping difficulties in high 

dimensional datasets and measuring the dot products of 

 (  ), the nonlinear function is replaced by a Mercer 

kernel such as Gaussian kernels and polynomial kernels 

[15]. The Gaussian kernel was used in this paper, which 

is a symmetric      kernel matrix of K, 

    ( (  )  (  ))          (7) 
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Summarizing the steps of applying kernel PCA [16]; 

First, the     matrix was computed. The variance of the 

Gaussian kernel in equation (8),   , was chosen as 

        (   ( )) [14]. Next, the eigenvalue 

problem was solved by diagonalizing K [14],[16], 

                                  (9) 

Then, the eigenvalues of K,   , were ordered in terms 

of the magnitude and the eigenvectors,   , were 

normalized which was satisfied by centering the QRS 

complexes. The first principal component was chosen as 

the EDR signal.  

5. Classification

The EDR signals were partitioned into one minute 

segments. A matrix of 34 features for each segment was 

extracted from the EDR signals derived from each 

algorithm. The features used in this study were mean 

value, standard deviation, and 32 power spectral density 

(PSD) of EDR signals [17].   

The feature matrix was applied to an Extreme Learning 

Machine (ELM) classifier. The ELM is a feed-forward 

network with one hidden layer with a large number of 

non-linear hidden neurons. It gives the advantage of 

randomly initialized connection weights of the input layer 

providing a flexible and fast to train classifier. The first 

layer weights were randomly set between -1.5 to 1.5 and 

Tanh was appointed as the activation function. The “fan-
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out” number defines the proportion of hidden layer 

neurons to input layer neurons [18][19]. Through a single 

training run, the hidden layer weights were obtained by 

the product of the pseudoinverse of hidden layer 

activation output and the labeled outputs from the 

learning set [18].  

  

6. Results and Discussion 

The ELM classifier was trained by 35 training records 

of the dataset for the three different EDR algorithms 

separately. The performance results, shown in Table 1, 

were obtained using the 35 test records and it was 

evaluated by leave-one-out cross validation as indicated 

in Table 2. The EDR signals from three different 

algorithms are illustrated in Fig.1. Classification results 

were achieved by fan-outs of 1 to 10.  The highest 

accuracy for training set was 85.92% achieved by PCA 

EDR features at a fan-out of 5 with sensitivity of 61.4% 

and specificity of 92.58%. Also, the highest performance 

during cross validation was obtained by PCA EDR 

features at a fan-out of 10 with an accuracy of 79.36%, 

sensitivity of 48.76%, and a specificity of 87.68% [20].  

From these results, it is evident that the linear PCA 

algorithm improved OSA detection by EDR features 

compared to the other two algorithms. The results are 

consistent with the results of other studies indicating the 

better performance of linear PCA algorithm in EDR 

estimation [14] compared to QRS amplitude. What we 

have not been able to confirm is the benefits of the kernel 

PCA method shown by [16]. We note that in [16], they 

manually selected clean sections of data and removed 

ectopic beats. We presented all beats to the EDR 

estimation algorithm and the non-linear transformation 

may have been adversely affected by the presence of 

ectopic beats and movement artefact corrupting QRS 

complexes. 

 

Table 1. Classification results from training set. 

 Fan-out Accuracy Sensitivity Specificity 

Q
R

S
 a

m
p
 1 66.71 73.81 68.59 

2 70.58 67.72 71.36 

5 79.87 68.85 82.88 

10 84.95 76.29 87.31 

P
C

A
 1 75.80 52.60 82.10 

2 82.55 58.69 89.03 

5 85.92 61.40 92.58 

10 84.95 76.30 87.32 

K
P

C
A

 1 71.88 29.80 83.29 

2 73.90 33.63 84.82 

5 77.71 39.95 87.94 

10 80.36 44.70 90.02 

 

 

Table 2. Classification results from cross validation (test-set). 
 Fan-out Accuracy Sensitivity Specificity 

Q
R

S
 a

m
p
 1 71.49 53.72 76.31 

2 74.91 56.20 79.98 

5 75.30 48.75 82.49 

10 75.73 44.69 84.15 

P
C

A
 1 71.12 43.34 78.66 

2 77.24 48.98 84.92 

5 77.39 45.15 86.14 

10 79.36 48.76 87.68 

K
P

C
A

 1 68.08 26.18 79.44 

2 67.31 25.51 78.64 

5 66.68 23.48 78.39 

10 65.82 24.61 76.99 

 

 
Figure 1. Input ECG signal and the QRS amplitude EDR, linear PCA, and Nonlinear EDR. 

 

303



7. Conclusion 

The test-set results indicate that higher performance 

was obtained from EDR features computed from the PCA 

algorithm compared to the classic QRS amplitude 

measurement and kernel PCA performed the worst. 

For future development, we will focus on excluding 

ectopic beats in order to improve the kernel PCA 

algorithm. Moreover, these EDR features could be 

combined with other ECG features such as RR variability 

to further enhance the classifier performance. 

 
 

Relation to Prior Work 
 

In my work presented at Computing in cardiology 

2014 [21], EDR was computed through the QRS 

amplitude method. The performance results have been 

reported by applying both EDR and RR interval features.  
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