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Abstract: This study was aimed at developing an 
algorithm that could identify the respiratory phases, i.e. 
inspiration (I) or expiration (E), by analysing 
seismocardiogram (SCG) cycles. In order to better assess 
SCG cycles, it is needed to discriminate the cycles based 
on their position in the respiratory phases. The total 2146 
SCG cycles obtained from 45 subjects were studied, in 
which 1109 cycles were in phase I, and the rest in phase 
E. Support vector machine (SVM), a powerful machine 
learning algorithm, was employed to identify the 
respiratory phase of SCG cycles. The systolic interval of 
each SCG cycle was divided to 32 equal bins, and the 
averages of these bins obtained the feature vector 
associated with each cycle. The SVM model was trained 
using half the data, and then was tested on the other half. 
The developed model could correctly identify 88% of the 
testing data. The obtained results are promising and can 
establish a solid ground for further analysis. 

1. Introduction

Seismocardiogram (SCG) is a cardiac signal that can 
be obtained by placing an accelerometer on the sternum 
and measuring the vibration of the heart. Previous studies 
have indicated that SCG is correlated to certain 
hemodynamic parameters, in particular systolic time 
intervals (STIs) [1]–[3]. On the other side, it has also 
been demonstrated that the morphology SCG signal is 
different in different phases of respiration, i.e. inhale (I) 
and exhale (E) [4]. Figure 1 shows two SCG cycles in 
phase I and E. The difference in their morphologies is 
observable in this figure. 

In order to better asses SCG and obtain systolic time 
intervals appropriately, it is beneficial to identify the 
respiratory phase of each SCG cycle. Such identification 
is highly challenging, because it should be conducted 
without an independent recording of respiration signal as 
collecting the respiration imposes extra complexity and 
cost. Therefore, the aim of this study was to develop an 
algorithm that could identify the respiratory phases (I or 
E) by analysing seismocardiogram (SCG) cycles.

Figure 1. The morphology of SCG cycles is different in 
different respiratory phases, i.e. inhale and exhale. 

2. Methods

In order to identify the respiratory phase of each 
seismocardiogram (SCG) cycle, different stages were 
considered that are explained in the following sections.   

2.1. Data collection 

The dataset was acquired from 45 (19 female and 26 
male) mostly old and diagnosed with ischemic heart 
disease (IHD) (Age: 66.5±9.9, Weight: 83±18.2 and 
Height: 170±8.5). The ethical approval for this data 
acquisition was granted by Simon Fraser University and 
the Fraser Health Authority of British Columbia. 

The data acquisition involved measurement of SCG, 
12 lead ECG and respiration. All of the signals were 
acquired by a Biopac biological data acquisition system 
(www.biopac.com 2007). The SCG signal was measured 
using a high sensitivity (1000 mV/g) accelerometer, 
which was positioned on the sternum. The accelerometer 
sensor was factory calibrated, weighed 54 g and was 
connected to a charge amplifier. The respiration was 
recorded using a strain gauge transducer that measures the 
changes in thoracic circumference, using a belt, which is 
fastened to the subject’s thorax. The subjects were asked 
to keep the normal pattern of respiration and to pause and 
hold their breath on maximum inhalation and maximum 
exhalation respectively for short periods of time not 
exceeding 4 s.  
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2.2. Preprocessing, segmentation, and 
labelling 

The acceleration signals were first low-pass filtered 
with 40 Hz cutoff frequency to obtain seismocardiogram 
(SCG). Then, SCG signals were segmented to beat to beat 
cycles using the R peaks of the concurrently recorded 
electrocardiogram (ECG) signals. Each SCG cycle was 
considered from two consecutive R peaks delayed by 200 
ms.  

Based on the position of the corresponding R peak in 
the respiration signal, each cycle was labelled as inhale (I) 
or exhale (E). 

2.3. Feature extraction 

To further analyze the data, it was needed to extract a 
feature vector from each SCG cycle. The identification 
model (that is described in the section 2.4.) assigns a label 
(I or E) to each cycle using the extracted feature vector. In 
this study, each SCG cycle was first normalized to have a 
unit length. Then, the first 512 data points of cycle were 
considered, which included the systole interval. These 
data points were divided to 32 equal-size bins (16 data 
points were in each bin). The averages of these bins 
obtained the feature vector associated with each SCG 
cycle. Figures 2 shows the extracted features from the 
systole intervals of two SCG cycles in inhale and exhale 
phases respectively.  

Figure 2. Top: The systole of an SCG cycle in the inhale phase, 
and its extracted feature points. Bottom: The systole of an SCG 
cycle in the exhale phase, and its extracted feature points. 

2.4. Identification 

To identify the corresponding respiration phase of each 
SCG cycle, support vector machine (SVM), a machine 

learning algorithm, was used. SVM is very powerful tool 
for identification problems, and has been widely used for 
analysing biomedical signals such as heart murmurs 
identification [5], [6], reducing false alarms during 
arrhythmia [7], and recently monitoring dental operations 
[8].  

SVM is originally a binary identifier, which separates 
the data of two categories by a hyper-plane that has the 
maximum minimum distance to the data [9]. Using SVM 
involves two stages: training and testing. In the training 
stage, SVM uses a selective set of data that are denoted as 
training data to develop the model. Then, in the testing 
stage, another set of data that is called testing is utilized 
to evaluate the performance of the developed model. In 
this study, half of the data was used for training and the 
other half for testing (there was no overlap between 
them). 

SVM usually transforms the data to a higher dimension 
to facilitate their separation by using a kernel function. In 
this study, a radial basis function (RBF) was employed: 

K X!, X! = exp  (−γ X! − X!
!
)

γ > 0 

(1) 

where X is the input vector, and γ is a hyper-parameter 
that can modify the results. The SVM with RBF kernel 
has another hyper-parameter C that controls how much 
misclassification is acceptable in the training stage [9]. In 
this study, the software package LIBSVM [10] was used 
for training and testing of the SVM model. To find the 
values of the hyper-parameters, the grid search method 
and a 5–fold cross validation were employed [11]. In the 
grid search, the values are explored in a wide range to 
find the solution. In a ν–fold cross validation, the training 
data are divided to ν equal–sized subsets, in which ν-1 
subsets are used for training, and the one remained subset 
for testing. This process is repeated ν times, and the 
average identification accuracy is obtained.  

3. Results

Among 2146 SCG cycles, 1097 ones were used for 
training (567 cycles in phase I, and 530 in phase E), and 
the rest for testing (1049 cycles, 542 cycles in phase I and 
507 in phase E). The hyper-parameters C and γ, were 
varied in the range 2−15, 2−13, . . . to 21 , 23, and for each 
pair, a 5-fold cross-validation was utilized in the training 
data. The optimal values of hyper-parameters were the 
ones that obtained the highest total accuracy. The 
obtained values were C=8, and γ= 0.125  

The corresponding elements of feature vectors in the 
training data were scaled to have zero mean and unit 
variance. The same scaling coefficients were employed 
on the feature vectors of the testing data. SVM with RBF 
kernel was used for training, and then the developed 
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Target Inhale Accuracy = 100* (Number of 
correctly identified inhale cycles / Total number of 
inhale cycles) 

Target Exhale Accuracy = 100* (Number of 
correctly identified exhale cycles / Total number of 
exhale cycles) 

Output Inhale Accuracy = 100* (Number of 
correctly identified inhale cycles / Total number of 
cycles identified as inhale) 

Output Exhale Accuracy = 100* (Number of 
correctly identified exhale cycles / Total number of 
cycles identified as exhale) 

Total Accuracy = 100* ((Number of correctly 
identified cycles / Total number of cycles) 

model was used for testing, in which the different 
identification accuracies were obtained as follows, 

Figure 3 displays the confusion matrix of this analysis, 
in which inhale and exhale phases are indicated by “1” 
and “2” respectively. In this matrix, the entries on the 
diagonal shows the number and percentage of correctly 
identified cycles (green color), and the off diagonal 
entries are corresponded to misidentified cycles (red 
color). The last row and column entries illustrate target 
and output accuracies respectively (gray color). Generally 
speaking, target or output accuracies describe how much 
of the input or output data are correctly identified. For 
instance, according to Figure 3, 86.6% of the inhale input 
data were identified correctly. Also, whenever the output 
of the developed model was exhale, its accuracy for being 
correctly identified was 84.8%.  

The right-bottom element of this matrix (blue color) 
shows the total accuracy as 88.4%, which indicates the 
efficiency of the proposed method.  

Figure 3. The confusion matrix and different identification 
accuracies. The inhale and exhale phases are indicated by “1” 
and “2” labels respectively. 

4. Conclusion

In this paper, an algorithm was proposed to identify the 
respiratory phase of SCG cycles, i.e. inhale or exhale. 
Support vector machine (SVM) that is a powerful 
machine learning algorithm was used for identification. 
The features were extracted from the time-domain and 
included the average-bins of the systole. The total 
identification accuracy was 88% that demonstrates the 
capability of the proposed method in identifying the 
respiratory phase. The identification accuracies were 
promising, and can be used as a ground for further 
analysis. As part of the future works, we would like to 
modify the algorithm for higher accuracies, and validate 
the results on more SCG cycles obtained from more 
subjects.  
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