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Abstract

Ballistocardiography is recognized as a reliable method
for non-invasive assessment of cardiovascular functions.
In this work, a wavelet approach was used on the y-axis
ballistocardiogram (BCG) to evaluate the respiratory si-
nus arrhythmia (RSA) phenomenon using a new parame-
ter: the ballistocardiogram amplitude modulation induced
by respiration (BAMR). Ea.y 4., local maximum energy of
BCG,, was quantified for each cardiac cycle. Then a time
series of Ea,,q. was created and analyzed using continu-
ous wavelet transform to provide BAMR values. The ECG
was used to compute the RSA amplitude as reference. Data
were collected on four subjects participating to an imposed
controlled breathing protocol with four different breathing
sequences. RSA amplitudes and BAMR present significant
changes (p < 0.05) for low breathing rate (0.10 Hz) com-
pared to high breathing rate (0.25 Hz) and a within-subject
correlation was observed. This study suggests that BAMR
could be used as a relevant alternative to RSA amplitude
for HRV investigation.

1. Introduction

Heart rate variability (HRV) has been used extensively
to investigate cardiorespiratory interactions, sleep stages,
autonomic nervous system and also to identify cardiovas-
cular diseases [1-5]. HRV analyses are usually performed
by spectral analyses of RR-interval (RRI) time series, ob-
tained from the ECG, which typically show three compo-
nents: a very low-frequency (VLF) [0.003-0.04 Hz], a low-
frequency (LF) [0.04-0.15 Hz] and a high-frequency (HF)
component [0.15-0.45 Hz] [4]. The latter reflects the respi-
ratory sinus arrhythmia (RSA), which corresponds to heart
rate oscillations at the breathing frequency [6].

Imposed controlled breathing (ICB) protocols are often
used to investigate cardiorespiratory interactions and car-
diovascular reactivity [7-9]. Indeed, stepwise controlled
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breathings allow to separate precisely LF and HF oscil-
lations from each other allowing a reliable estimation of
RSA [8, 10]. Furthermore, the magnitude and phase of
the transfer function of cardiorespiratory interactions can
be quantified [11]. Different breathing sequences are then
imposed in order to obtain a detailed profile of the car-
diorespiratory interaction over a wide frequency spectrum.

Thanks to technology improvements of last few years,
especially on MEMS, HRYV is being investigated using an-
other non-invasive and cheaper method: ballistocardiog-
raphy. A ballistocardiogram (BCG) represents the global
acceleration of a human body recorded using accelerome-
ters. Due to its simple design, BCG can be obtained us-
ing sensors placed on a chair, a bed, a weighing scale or
directly on the subject. For that purpose, ballistocardio-
graphy is used for cardiovascular changes monitoring as
HRYV, cardiac contractility investigation and also breathing
rate detection [12—15]. However, for a suitable monitoring
technique, BCG events should be robustly and precisely
estimated for each heart beats (time domain methods),
which is not always possible [12, 16]. Therefore, time-
frequency domain methods are commonly used for HRV
investigations, especially, the continuous wavelet trans-
form (CWT) widely used due to its flexible time-frequency
resolution. CWT is considered as a reference for non-
stationary biomedical signals analysis [17] and is already
used to investigate BCG signals [13,18].

In this work, a wavelet approach is presented to inves-
tigate the influence of respiration on BCGy, signals during
short stepwise ICB protocols. The maximum energy peak
of each cardiac cycles is determined by CWT and used to
construct a time series of beat-by-beat maximum energy. A
second wavelet analysis is performed to extract the ballis-
tocardiogram amplitude modulation induced by respiration
(BAMR). BAMR is then compared with RSA amplitudes
also obtained by CWT.
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2. Ballistocardiography

Ballistocardiography investigates the global motion of
the body due to the mechanical activity of the heart and
the blood circulation. In this study, we investigated the y-
axis of the BCG signal, which is the main component rep-
resenting accelerations associated to the feet-to-head axis
[12]. Figure 1 shows typical BCG waves within a cardiac
cycle and their nomenclatures. The J-wave, or a4z, rep-
resenting the maximum amplitude of the BCG,,, was al-
ready proved related to heart rate, pre-ejection period or
even stroke volume estimation [12-14].
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Figure 1. Ensemble average of 50 heart beats for a typical
subject. Classical waves of the BCG,, are presented. The
J-wave or Gynqy 1s the maximum of the BCGy curve.

3. Methods

3.1. Human data and protocol

Data were collected on 4 subjects (age: 41 +/- 12 years;
weight: 58 +/- 16 kg; height: 166 +/- 10 cm) during the
baselines of the ESA-61th parabolic flight campaign. Sub-
jects participated to a supine ICB protocol with 4 groups of
10 breathing cycles at 4, 6, 8 and 10 s as respiratory period
(Tresp).

ECG, BCG, impedance cardiogram (ICG) and respira-
tion were continuously recorded at 1 kHz using the Car-
diovector device [19]. R-peaks were automatically de-
tected in the ECG to generate RRI time series [12]. Spec-
tral analyses of BCG, and RRI were performed by the
CWT method using the Matlab software (The MathWorks,
Inc., USA). BAMR and RSA amplitudes were then esti-
mated for each breathing steps.
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3.2. CWT theory

CWT is recognized for its flexible time-frequency res-
olution. In this study, we used a Morlet wavelet function
considered as an optimal solution for time-frequency anal-
ysis [17]. In the frequency domain, the Morlet wavelet is
defined as:

Bo(sw) =~ VAH (w)e (wmwo)?/2 (1)
where
1 ,Vw>0
H(w) = { 0 ,otherwise 2

wo is the central wavelet frequency and s the wavelet
scale. Those parameters determine the time-frequency res-
olution. Indeed, a high value implies a high frequency res-
olution but a low time resolution and vice-versa [3]. Fur-
thermore, wq should satisfy the admissibility condition for
a wavelet: wg > 6 [20]. In this study, to optimize the
time resolution due to short consecutive stepwise breath-
ings steps, a low wavelet frequency (wy = 6) was used.

The scale is defined as:
s; =802, j=0,1,..

o 3)

where sg is the smallest scale chosen, 75 is the scale
resolution and J determines the largest scale. Using a Mor-
let wavelet with wg = 6, the relationship between scale
and frequency is expressed by f = 1/1.03s. In this study,
the scale-related parameters were chosen as: sy = 1.9,
07 = 0.125 and J = 50, allowing HRV analysis rang-
ing from 0.007 Hz up to 0.5 Hz recommended by [4]. To
perform the time-frequency analysis on the BCG,, compo-
nent, the frequency band [1-30 Hz] was investigated. For
that purpose, we used the following scale-related parame-
ters: so = 0.030, 67 = 0.05 and J = 100.

The instantaneous amplitude of signal’s energy is com-
puted by taking the square root of the wavelet coefficients,
represented by the following relationship [21]:

N-1
Wo(s) = Z £ U (swy, ) et wrmot
k=0

“4)

where 4t is the sampling period, Zj, the discrete Fourier
transform of the signal and wy, the angular frequency.

3.3. RSA-BAMR determination

RSA amplitudes were estimated for each subjects using
the CWT method applied on RRI time series, resampled at
8 Hz. Figure 2 presents the RSA amplitude computation
for one subject performing the ICB protocol.

To estimate the BAMR parameter, the maximum en-
ergy of BCGy, Ea 4., was localized for each cardiac cy-
cle. For that purpose, the CWT method was applied on
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Figure 2. RSA amplitude estimate using CWT during an
ICB protocol. From top to bottom: 1) RRI time series 2)
Scalogram obtained using CWT on RRI 3) Instantaneous

amplitude of RSA.

the BCG, and the instantaneous amplitude of the signal
was computed (Figure 3). A time series of each local en-
ergy maximum, Fa,,,;, was created and resampled at 8
Hz. Ea,,., time series was then investigated again by the
CWT method in the same frequency range as HRV (i.e.
from 0.007 Hz to 0.5 Hz). Finally, the instantaneous am-
plitude was computed and corresponds to the BAMR esti-
mate.

4. Results

RSA amplitudes and BAMR values were estimated for
each subjects (n=4) for all breathing frequencies. Mean
values were then computed. Figure 4 presents the results
of both parameters in function of the breathing period. As
expected [9], the RSA increases with the breathing period.
Significant RSA amplitude changes (p < 0.05) were ob-
served for the last two breathing periods (Tresp=8,10 s).
Similarly, BAMR increases with the breathing period and
statistically significant changes (p < 0.05) are observed
for the highest breathing period (Tresp=10 s). By contrast,
Amaq decreases with Tresp (p < 0.05) while RRI remains
constant during the ICB protocol. For each subjects, a lin-
ear regression was performed between RSA and BAMR
and a high correlation was obtained. Mean R? was then
computed: R? = 0.8466 + 0.1073.

5. Conclusion

Ballistocardiography has already been proved as an in-
novative and reliable alternative to ECG for HRV or car-
diac contractility investigations [13—15]. However, most
studies used time intervals analysis such as J-J intervals, as
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Figure 3. Estimation of the maximum energy of BCG,,
Fa,,q:, for each cardiac cycle. From top to bottom:
1) ECG 2) BCG, 3) Scalogram obtained using CWT on
BCG,. 4) Instantaneous amplitude of the energy contained
in the BCG, component. Each local maximum (black
spot) corresponds to an Ea,,,, value.

an alternative to classical HRV analysis.

In this study, we proposed another alternative by inves-
tigating energy amplitude variations using a wavelet ap-
proach to quantify the BAMR especially during stepwise
ICB protocols. A Morlet mother wavelet function with a
low central wavelet frequency (wp=6) was used to optimize
the time-frequency resolution. This CWT method presents
the advantage of not requiring BCG events determination
and allows robust beat-by-beat investigations. Our results
demonstrate a significant increase with the breathing pe-
riod for the BAMR parameter similar to the RSA depen-
dence and a high correlation was observed within-subjects.
However, due to the high subjects variability, the corre-
lation was not confirmed between subjects. Despite the
fact that data were collected on a low numbers of sub-
jects (n=4), significant results are encouraging for further
researches.

Our results suggest that BAMR can be a reliable replace-
ment to RSA amplitude, extracted from RRI time series.
As suggested by literature, we recommend the use of bal-
listocardiography as a relevant alternative to ECG for HRV
investigation, especially in new cheaper non-invasive tech-
nologies. Furthermore, the CWT method could be imple-
mented into small wearable devices for smart monitoring.
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Figure 4. BAMR and RSA versus the breathing period
(Tresp). Mean values are presented 4 standard deviation.
(*) indicates significant changes (p < 0.05) compared to
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