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Abstract

In this paper we address the problem of fibrosis detec-
tion in patients with Hypertrophic cardiomyopathy (HCM)
by using a sparse-based clustering approach and Dictio-
nary learning. HCM, as a common cardiovascular dis-
ease, is characterized by the abnormal thickening, archi-
tectural disorganization and the presence of fibrosis in the
left ventricular myocardium. Myocardial fibrosis in HCM
leads to both systolic and diastolic dysfunction. It can
be detected in Late Gadolinium Enhanced (LGE) cardiac
magnetic resonance imaging. We present the use of a Dic-
tionary Learning (DL)-based clustering technique for the
detection of fibrosis in LGE-Short axis (SAX) images. The
DL-based detection approach consists in two stages: the
construction of one dictionary with samples from 2 clus-
ters (LGE and Non-LGE regions) and the use of sparse
coefficients of the input data obtained with a kernel-based
DL approach to train a K-Nearest Neighbor (K-NN) clas-
sifier. The label of a test patch is obtained with its respec-
tive sparse coefficients obtained over the learned dictio-
nary and using the trained K-NN classifier. The method
has been applied on 11 patients with HCM providing good
results.

1. Introduction

Hypertrophic cardiomyopathy (HCM) is the most com-
mon cardiovascular disease. It is mainly characterized by
the abnormal thickening of the myocardium and the pres-
ence of fibrosis. HCM is a disease with variable prog-
nosis [1]. A better characterization of HCM and fibro-
sis is still challenging in caridac imaging. Several stud-
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ies have shown the relevance of Late Gadolinium En-
hancement (LGE) in Cardiovascular Magnetic Resonance
(CMR) imaging in the location and the assessment of my-
ocardial scar and fibrosis [2]. The accurate estimation of
the transmural extent of the hyper-enhanced regions is cru-
cial for diagnosis and to estimate functional myocardial
recovery after acute myocardial infarction and reperfusion
therapy. An automated segmental scoring of infarct extent
begins with the detection of the infarct on the images. Sev-
eral methods based on the tunning of thresholds with user
manual interaction [3-5] or automated definition of the in-
farcted zones using morphological operators [6] have been
developed to this end. An overview of previously pub-
lished scar tissue detection, quantification and segmenta-
tion methods is presented in [7] where a standardised eval-
vation benchmarking framework for algorithms segment-
ing fibrosis and scar in left atrium (LA) myocardium from
LGE-CMR images is also presented. Some of the meth-
ods are based on clustering that avoid the choice of gray
level thresholds. For example, the fuzzy c-means method
[8] is an unsupervised approach providing each voxel with
a level of membership to both, LGE and non-LGE classes,
describing the belongingness of the voxel to the class. Seg-
mentation of fibrosis or scar in LGE-CMR is challenging
due to multiple causes including contrast variation due to
inversion time, signal-to-noise ratio, motion blurring and
artifacts.

In this paper, we present the use of a Dictionary Learn-
ing (DL)-based clustering technique for the detection of
fibrosis in LGE-MRI following the idea of the frame-
work for clustering datasets that are well represented in
the sparse modeling framework with a set of learned dic-
tionaries [9]. The detection task based on DL consists in
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two stages: a) learning a dictionary in a supervised mode
(using the label information of the training data) and, b)
training a classifier using the sparse approximation of the
data. Sparse approximations are representations that ac-
count for most or all information of a signal with a lin-
ear combination of a small number of elementary signals
called basis vectors or atoms of the dictionary [10]. These
basis vectors capture high-level patterns in the input data.
The detection approach uses the sparse representation of
the input data over the learned dictionary to train a clas-
sifier applied for the detection of fibrosis in a set of pa-
tients with HCM. The evaluation of the proposed method
is realized by visual analysis and by comparison with other
method of the literature to detect myocardial fibrosis [8].

2. Methods

The proposed approach in LGE-MRI is applied over
the entire LGE-SAX image to detect enhanced and non-
enhanced regions by spliting the image in several patches.
Based on the DL framework, firstly, one dictionary is con-
structed with samples from 2 clusters (LGE and Non-LGE
regions). Secondly, the sparse coefficients of the input data
are computed and then used to train a K-NN classifier. Fi-
nally, the label of a test patch is obtained with its respective
sparse coefficients obtained over the learned dictionary and
using the trained K-NN classifier. The zones of fibrosis can
be detected in the myocardium delimited by the endo- and
epicardial contours. The process is divided in 4 stages.

2.1. Feature extraction

Firstly, from the LGE-SAX images, random non-
overlapping patches of dimension [3x3] are extracted.
Figure 1 shows an example of the feature extraction from
4 random LGE-SAX images. The non-labeled extracted
patches can belong to different regions: LV and RV
cavities, fibrosis and other regularly enhancing and non-
enhancing structures inside and outside the heart. The sim-
ilarity among the extracted patches is then calculated by
using a Gaussian (radial basis function RBF) kernel with
bandwidth o.

Patch 3x 3

Figure 1. Feature extraction from LGE-SAX images

2.2.  Clustering

The initialization of the dictionary is very important for
the success of the fibrosis detection process. Due to the
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cost associated with the procedure, repeating random ini-
tializations is practically impossible. Thus a smart initial-
ization is needed. We propose the construction of an initial
dictionary with two classes based on an unsupervised clus-
tering process over the similarity measures among patches.
Specifically, the aim is to split the patches in two classes,
each one associated respectively with LGE and non-LGE
regions. For that purpose, we apply a clustering approach
based on Wavelets [11] which constructs clusters from a
hierarchical cluster tree. The input matrix is decomposed
using the DWT function with the Haar Wavelet applied on
each row of the similarity matrix.

2.3. DL-based classification: training stage

The detection of fibrosis is performed by adapting the
Kernel Sparse Representation DL algorithm (KSRDL)
[12] with an initial dictionary resulting from the cluster-
ing process described before where training patches are
identified in two classes LGE and non-LGE patches. In
the KSRDL algorithm, sparse representation is introduced
from a Bayesian viewpoint assuming Gaussian prior over
the atoms of the dictionary. The KSRDL model is defined

as follows:
N
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where the input signals Y € R™* ¥ represent a data ma-
trix of patches where each column is a vectorised patch of
dimension [3x3] (n is the signal size, N is the number
of input signals or patches). D = [dy,ds,d3,...,dk] €
R™ K with K atoms is the dictionary to be learned and
X =[xy, x2,...,xN] € REXY are the estimated sparse
codes of input signals Y. Classification based on DL
is then performed by training a K-NN classifier over the
sparse training coefficients matrix X.

2.4. DL-based classification: testing stage

The class label of new p test instances can be predicted
using the classifier obtained in the training step and the
learned dictionary D. As the selected classifier is trained
based on the sparse coefficients of the input data, the test
data need to be represented in the same space of repre-
sentation (sparse coefficients) over the learned dictionary.
To this end, the sparse coefficients matrix X for the new
test instances can be obtained by solving the Non negative
Quadratic Problem (NNQP):

1
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where Hy.», = D" D and g = —D"Y. As the optimiza-
tions of the above problems only require inner products



between the data, the sparse coding problem is solved by
replacing inner products to a radial basis function (Gaus-
sian) kernel.

Each LGE-SAX test image is represented by a grid
of overlapping feature patches of dimension [3x3]. The
sparse coefficients of each patch are obtained as described
previously with the learned dictionary and then, the label
of each patch is obtained using the trained K-NN classifier.
The pixel in the middle of the submatrix [3x3] is catego-
rized as LGE or non-LGE pixel. Finally, the LGE pixels
corresponding to fibrosis zones are delimited by the endo-
and epicardial borders of the myocardium.

3. Experiments and results

This study was performed in collaboration with
the “Centre d’Investigation Clinique Innovation Tech-
nologique” CIC-IT 804 of the CHU-Pontchaillou in
Rennes. Cardiac Magnetic Resonance (CMR) images
from 11 patients with HCM were performed with a 3T
Achieva clinical imager (Philips Medical Systems, Best,
The Netherlands), using cardiac SENSE Coil (multicoil).
LGE-Short axis (SAX) CMR images acquired in inversion
recovery (IR) sequence has been used in this work. For
each patient the SAX images are obtained from 16 slices
covering the apical, mid-cavity and basal planes.

In the training stage, a set of 1184 non-overlapping
patches from 4 random inter-patient LGE-SAX IR images
at mid-diastole and at different planes are extracted in or-
der to construct the initial dictionary. The first stage of
clustering process splits the patches in two clusters of size
952 and 232 respectively. Then, the KSRDL algorithm
[12] is applied in order to obtain the sparse codes of the
training data that are used in the K-NN classifier.

Figure 2-top, shows LGE-SAX images at mid-cavity
plane for three testing patients and the Fibrosis detec-
tion (Figure 2-bottom) using the proposed approach. The
detected fibrosis is represented in color inside the my-
ocardium delimited by endo- and epicardial boundaries
manually delineated by a cardiologist. In a first step of
evaluation, a visual analysis by a cardiologist has been
performed. The proposed method is able to detect fibro-
sis succesfuly in 9 of 11 patients. The method misclasified
LGE pixels in two patients due to the low contrast between
myocardium and the inside of the LV cavity. In a second
step of evaluation, our method has been compared with
a method reported in the literature. The fuzzy c-means
method proposed by [8] was used to compare the detected
myocardial fibrosis between our method and this approach.
Figure 3-top illustrates the output of the fuzzy c-means for
the LGE-voxel class for the voxels into the myocardium
for three patients.

The fuzzy c-means approach includes a defuzzification
procedure to obtain a binary description of those pixels be-
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Figure 2. Top: original LGE-SAX images in three patients
at the mid-cavity plane. Bottom: resulting fibrosis detec-
tion (represented in colour) in the myocardium delineated
by endo and epicardial boundaries using the proposed ap-
proach
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Figure 3. Examples of resulting fibrosis detection in three
patients. Top: the output of the fuzzy c-means with the
membership map of the LGE-class. Middle: The resulting
defuzzification procedure. Bottom: The fibrosis detection
using the proposed approach.

ing part or not of fibrosis. Then, for the entire myocardium,
a threshold of the LGE-class membership was varied be-
tween 0.25 and 0.5, and the curve representing the number
of LGE-voxels was plotted over these varying threshold.
Then the threshold value providing the most stable out-
put (the longest portion were the number of LGE-voxels
remains the same), was selected as the optimal one [13].



This threshold is then used to get a binary image from the
output of the fuzzy c-means approach. Figure 3-middle
shows the resulting detection of fibrosis for the patients
on the top after the defuzzification procedure. Figure 3-
bottom shows the resulting detection of fibrosis using our
proposed approach. It can be noted that the fibrotic zones
are accurately identified in both methods, for those regions
presenting a high concentration of pixels with late gadolin-
ium enhancement.

4. Conclusion

We have presented a method for the detection of Fibro-
sis in LGE-SAX images using a Dictionary learning-based
clustering approach. The detection approach has been ap-
plied on a set of 11 patients with HCM from which LGE-
SAX images at 16 different slices were processed. The
proposed method allows the detection of fibrosis inside
the myocardium using the endo- and epicardial bound-
aries manually delineated by a cardiologist. The method
has been evaluated by a visual evaluation and by compar-
ing with the results of one method in the literature. The
method has been able to succesfully detect fibrosis in 9 of
the 11 patients. The use of classification based on sparse
representation of input patches from LGE images obtained
with a kernel DL technique results in a powerful technique
for the detection of fibrosis. The method will be exten-
sively validated with more patients and for the quantifica-
tion of fibrosis.
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