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Abstract

Cardiac navigation systems (CNS) are often used in
electrophysiological studies to create spatial-electrical
maps supporting the arrhythmia mechanism identification.
Sequentially recorded electrograms yield the bioelectrical
information from features such as voltage and activation
times in terms of their spatial location, which are sub-
sequently interpolated for building the electroanatomical
map (EAM) of the cardiac chamber. Our goal was to eval-
uate quantitatively the effect of interpolation in the EAM
accuracy when reconstructed from a set of samples. Trian-
gulated irregular networks (TIN), thin plate spline (TPS),
and support vector machines (SVM) were assessed by us-
ing: (a) two detailed simulated time activation maps dur-
ing flutter and sinus rhythm in both atria; (b) a set of real
CNS maps, given by 13 activation time and 19 voltage
maps, with 6 right atria (RA), 6 left atria (LA), 4 right
ventricles (RV), and 16 left ventricles (LV). Interpolation
methods were benchmarked using root mean squared er-
ror (RMSE), efficiency (EF), and Willmott distance (WD).
On the one hand, EF and WD were similar for yielding a
clearer cut-off point than RMSE for the number of required
samples, which was about 100. Better EAM accuracy was
obtained using TPS, followed by SVM and TIN, except for
flutter in the RA, where early-meets-late was smoothed by
SVM. On the other hand, EAM accuracy (in terms of the
average WD) was slightly outperformed by RA than LA
(0.57 vs 0.52), whereas RV and LV were similar (0.71 vs
0.71). In reference to the methods, similar average WD
was given by the interpolation methods (TIN 0.64 ± 0.14;
TPS 0.66 ± 0.15; SVM 0.65 ± 0.18). The EAM accuracy is
dependent on the map nature and on the cardiac chamber.

1. Introduction

Cardiac navigation systems (CNS) are usually used for
cardiac mapping with the aim of identifying the arrhyth-
mia mechanism and enhancing the ablation success dur-
ing electrophysiological (EP) studies. These systems are
capable of localizing and guiding catheters and electrodes

within the heart by using electromagnetic fields. In addi-
tion, they build three dimensional electroanatomical maps
(EAM), which show a cardiac feature, such as voltage am-
plitude or activation time, over an anatomical representa-
tion of the cardiac chamber surface in real time.

The newest CNS can create the anatomical mesh quickly
by incorporating either anatomical information provided
by a multi-electrode catheter, or medical images such as
computed tomography and magnetic resonance. How-
ever, the electrical information is acquired by sequentially
recording the electrical activity (electrograms or EGM) at
multiple sites during several seconds. The higher the num-
ber of recorded EGM, the higher the accuracy of the EAM,
although the EP study duration is also increased. Thus, the
EAM is represented by an anatomical mesh, with a cardiac
feature (such as voltage amplitude or activation time) mea-
sured and associated to several of the mesh vertices [1].

For an accurate representation of the EAM, the cardiac
feature is interpolated in the rest of the vertices where the
EGM were not recorded. Therefore, the aim of this work
was to evaluate quantitatively the effect of the interpola-
tion in the accuracy of the reconstructed EAM. For this
purpose, triangulated irregular networks (TIN), thin plate
spline (TPS), and support vector machines (SVM) were
benchmarked for the cardiac feature interpolation in simu-
lated and real EAM, and in both ventricles and atria.

This paper is structured as follows. In the next section,
we summarize the assessed interpolation methods. In Sec-
tion 3, we present the results of the interpolation for the
cardiac features in simulated and real EAM. Conclusions
are finally summarized.

2. Interpolation methods

In order to evaluate the accuracy of different EAM re-
constructions, we considered three interpolation methods.

TIN method uses the Delaunay triangulation to build ad-
jacent, continuous and non-overlapping triangles from ir-
regularly spaced samples. The Delaunay triangulation is
done such that the unique circle circumscribed about each
triangle contains no other samples in its interior. This def-
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Figure 1. Evolution of RMSE, EF and WD with the number of samples and for a flutter (FL) and sinus rhythm (SR)
simulation in the right atrium (superior) and left atrium (inferior) using TIN, TPS and SVM.

inition can be extended to higher dimensions. The princi-
ples of TIN are described in detail in [2].

TPS method estimates a thin smooth surface that passes
through all given samples. This surface is constructed by
selecting a function minimizing the bending energy of a
surface [3]. Despite a TPS was initially motivated for a
two dimensional interpolation scheme, the concepts can be
applied to any dimension [4,5]. Unlike TIN, if noise is pre-
sented in the samples, a regularization parameter λ allows
to relax the interpolation requirements, and then, the re-
sulting surface does not cross exactly through the samples.

SVM is a learning algorithm based on the Structural
Risk Minimization principle [6]. This method maps the
samples (as input vectors) to a high-dimensional space
through a nonlinear mapping, so that it is possible to esti-
mate a regression hyperplane in this space. The nonlinear
mapping is done by using a Mercer kernel, the most usual
one being the Gaussian kernel. In the training process, the
regularization parameter,C, the percentage of support vec-
tors, ν, and the Gaussian width, σ, are searched and tuned.

In order to design the TPS and SVM interpolators, we
explored a range of values for each design parameter in
every method:
• For parameter λ in the TPS method, values were consid-
ered between λ = 10−3 and λ = 102 in 10 logarithmically-
spaced intervals.
• For percentage of support vectors (ν), the range was
evaluated from 0.1 to 0.95 in 10 equidistant intervals.
• For the Gaussian width, σ, the range from 0.1σ̂ to

2σ̂ was searched in 10 equidistant intervals, where σ̂ is
the mean distance between each pair of samples, where
the term samples refers to vertices with a cardiac feature
(EGM) associated.
• For parameter C, values between C = 100 and C = 102

in 4 logarithmically-spaced intervals were considered.
While the most appropriate parameter value for TPS was

chosen according to a leave-one-out (LOO) methodology,
a 5-fold cross-validation approach was used for SVM due
to the high computational time required to search three dif-
ferent parameters with the LOO methodology [7].

3. Results

The interpolation methods were assessed by using the
LOO strategy, and several merit figures were used for this
evaluation: root mean squared (RMSE), efficiency (EF),
and Willmott distance (WD) [8].

Interpolation for simulated EAM. Simulated activa-
tion time EAM for two rhythms, a sinus rhythm (SR) and a
flutter (FL) in the right atrium [9,10], were interpolated by
using the three proposed methods, namely, TIN, TPS, and
SVM. Given that simulated EAM have tens of thousands
of vertices and the real CNS EAM have barely hundreds
of vertices, simulated EAM meshes were irregularly and
randomly subsampled with 25, 50, 75, 100, 150, 200, 250,
300, 350, 400, 450, and 500 vertices, in order to have a
similar number of vertices as real EAM.

Figure 1 shows the average of RMSE, EF and WD with
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Figure 2. From left to right: Original EAM and the corresponding interpolation maps using TIN, TPS, and SVM for
bipolar voltage (a), unipolar voltage (b), and activation time (c), in left ventricles.

Table 1. Average of RMSE, EF and WD, for bipolar and unipolar voltage (mV) and activation time (ms) in real CNS
EAM, for the RA, LA, RV and LV using TIN, TPS and SVM.

Cardiac Cardiac No. EAM TIN TPS SVM
chamber feature RMSE EF WD RMSE EF WD RMSE EF WD

Bipolar 2 0.67 0.03 0.53 0.61 0.23 0.68 0.61 0.21 0.62
RA Unipolar 0 - - - - - - - - -

Activation 4 81.00 0.03 0.56 67.74 0.33 0.72 65.95 0.38 0.71
Bipolar 1 1.07 0.10 0.55 0.872 0.4 0.77 0.95 0.28 0.68

LA Unipolar 0 - - - - - - - - -
Activation 5 85.04 -0.60 0.52 67.19 0.052 0.52 63.39 0.19 0.48

Bipolar 1 1.76 0.26 0.61 1.57 0.41 0.80 1.57 0.41 0.80
RV Unipolar 2 1.92 0.77 0.83 2.74 0.73 0.92 2.51 0.78 0.93

Activation 1 26.27 -0.07 0.56 27.22 0.34 0.74 24.73 0.44 0.77
Bipolar 8 1.56 0.41 0.69 1.5 0.46 0.80 1.28 0.57 0.81

LV Unipolar 5 1.95 0.72 0.78 1.73 0.78 0.93 1.87 0.73 0.92
Activation 3 55.07 -0.33 0.48 44.47 0.13 0.61 47.34 0.05 0.27
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10 realizations for the simulated SR and FL in a RA and a
LA. Lower performance was obtained in all methods and
merit figures for FL in RA due to the high variation of the
cardiac feature in the early-meets-late area of the activa-
tion EAM in a FL. EF and WD were similar for yielding a
clearer cut-off point than RMSE for the number of required
samples, which was around 100 atrial samples. In general,
higher performance was obtained for TPS and SVM than
for TIN; however TPS, and TIN yielded better EAM qual-
ity than SVM in FL-RA for the highest number of samples
(from 400 to 500 in RMSE and EF, and from 150 to 500
in WD) due to the high smoothing in the early-meets-late
created by SVM.

Interpolation for real EAM. Real CNS maps (13 acti-
vation time and 17 voltage maps) in 6 right atria (RA), 6
left atria (LA), 4 right ventricles (RV), and 16 left ventri-
cles (LV), were also used to evaluate the performance of
the interpolation methods (TIN, TPS and SVM). The CNS
EAM had an average of 204 ± 211 samples (105 ± 40 for
RA, 123 ± 44 for LA, 164 ± 175 for RV, and 287 ± 270
for LV).

Table 1 shows the average for RMSE, EF, and WD in
bipolar and unipolar voltage, and activation time EAM,
for each interpolation method. TPS and SVM yielded bet-
ter performance than TIN for almost all the EAM and car-
diac chambers. Higher EF was yielded for unipolar voltage
EAM than for bipolar, and activation time for both LV and
RV. While the best bipolar voltage EAM quality was ob-
tained with RA, the best activation time EAM quality was
yielded in the RV.

Figure 2 shows the original and the corresponding in-
terpolation maps with TIN, TPS and SVM for a bipolar
voltage (a), unipolar voltage (b), and activation time (c)
EAM. Given that there is no gold-standard for compari-
son, we used the EAM created by the CNS as reference.
In the unipolar EAM, while the SVM method smooths the
region of highest voltage, TPS and TIN are more similar
to the interpolation generated by a real CNS. In the acti-
vation time EAM, both TPS and SVM smooths the region
of latter activation, and TIN enhances the region of early
activation.

4. Conclusions

CNS EAM are built by acquiring the anatomical shape
of the cardiac chamber and creating a mesh where the elec-
trical information, i.e. the cardiac feature, is added in sev-
eral vertices where the EGM is recorded. In the rest of
the vertices, the cardiac feature is interpolated in order to
have a complete representation of the EAM. The accuracy
of this interpolation determines the quality of the EAM,
and hence, the clinical meaning to determine the arrhyth-
mia mechanism and the best ablation treatment. Here, we
evaluated three different interpolation methods, TIN, TPS

and SVM, in simulated and real CNS EAM. In general,
TPS and SVM yielded better performance than TIN, but
the EAM accuracy is dependent on the map type and on
the cardiac chamber.
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