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Abstract

One dimensional Doppler Ultrasound (DUS) is a com-
monly applied technique for fetal heart rate monitoring,
but it can also be used to identify the timings of fetal
cardiac valve motion. These timings are required to es-
timate the fetal cardiac intervals, which are fundamen-
tal and clinically significant markers of fetal development
and well-being. Several methods have been proposed in
previous studies to automatically identify the valve move-
ment timings using 1-D DUS and fetal Electrocardiogra-
phy (fECG) as a reference. However DUS is highly suscep-
tible to noise and variable on a beat-to-beat basis. There-
fore it is crucial to assess the signal quality to ensure its
validity for a reliable estimation of the valve movement
timings. An automated quality assessment can provide the
operator with an online feedback on the quality of DUS
during data collection. This paper investigates automated
classification of the DUS signal quality using Naive Bayes
(NB) classifier. The quality of 345 beats of DUS signals
collected from 57 fetuses was assessed by four indepen-
dent annotators and used for training and validation of the
classifier. Using Fleiss kappa test, a fair agreement was
found between the raters with overall Kk = 0.3. The per-
formance of the classification was tested by 10-fold cross
validation. Results showed an average classification accu-
racy of 86% on training and 84% on test data.

1. Introduction

Fetal cardiac intervals have been clinically used to char-
acterize the fetal cardiac function and they provide more
information on fetal well being than heart rate alone. In
particular, Systolic Time Intervals (STI) have been estab-
lished as indicators of myocardial function and fetal devel-
opment [1-3]. Cardiac intervals are estimated from the on-
set of QRS complex of fetal Electrocardiography (fECG)
together with the opening and closing time of heart valves.
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Early studies in the 1980s proposed non-invasive meth-
ods to estimate the intervals using the one dimensional
Doppler Ultrasound (DUS) signal and fECG [4-7]. These
studies used band pass filtering approaches to extract the
high frequency component of the DUS, from which the
valve movements were identified manually by experts us-
ing fECG as a reference. Improved signal processing tech-
niques were later used to separate the component linked
to the valve movements more effectively, such as Short
Time Fourier Transform (STFT) analysis, multi-resolution
wavelet [8-10].

Several automated techniques for identification of valve
movements were proposed in our previous studies to over-
come the shortcomings of manual methods including their
time consuming process and vulnerability to inter and intra
observer errors [11-13]. However the pattern and the qual-
ity of the DUS signal were found to be variable, even on a
beat-to-beat basis [12]. The signal is highly contaminated
by noise and its extensive variability and non-stationary
characteristics complicate the valve identification. There-
fore, an automated DUS quality assessment is required for
a reliable estimation of the valve timings and also provid-
ing a real time feedback to the operator during data col-
lection. The importance of DUS signal quality assessment
for its classic application in Fetal Heart Rate (FHR) mon-
itoring, was investigated in previous studies [14, 15]. This
paper focuses on the signal quality assessment for the ex-
tended application of DUS signal in valve motion identifi-
cation.

2. Methods

2.1. Data

One dimentional DUS data were obtained using ul-
trasonic transducer 5700 (Corometrics Medical Systems,
Inc., model: 116) with 1.15 MHz signals. Data were col-
lected from 57 pregnant women at the gestational age of
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16 to 41 weeks with healthy single pregnancies at Tohoku
University Hospital in Japan. Abdominal ECG signals
were also recorded using 12 electrodes (10 electrodes on
the mothers abdomen, one maternal reference electrode at
the right thoracic position and one on the back). A multi-
channel data acquisition system was used to collect the si-
multaneous DUS and ECG data. All recordings were one
minute in length and sampled at 1 kHz with 16-bit reso-
lution. The study protocol was approved by Tohoku Uni-
versity Institutional Review Board and written informed
consent was obtained from all participants.

2.2. fECG extraction

Fetal ECG was used as a reference for segmentation of
the DUS signal into cardiac cycles. It was extracted from
the abdominal ECG recordings using a combination of ma-
ternal ECG cancelation and blind source separation with
the reference signal (BSSR) [16]. The R-peaks of fECG
were then detected automatically applying a lower thresh-
old (e.g. 5 times the mean of fECG over 10 second in-
tervals) and peak detection based on the derivative of the
signal.

2.3. DUS signal decomposition

The DUS signal contained components associated with
the motion of fetal cardiac valves and walls or other ma-
ternal and fetal organs. To isolate the high frequency
component of the DUS signal linked to the valve move-
ment, the DUS signal was decomposed by the multires-
olution Wavelet analysis, the same as in our previous
study [10, 12]. Using a second order complex Gaussian
as mother wavelet, the detailed signal of the DUS signal
at level 2 (100-200 Hz) was obtained as the valve motion
related component. The envelope of the absolute value of
this signal was then estimated by interpolating the maxima
and smoothing by a low pass filter. Each envelope was seg-
mented into cardiac cycles using the corresponding R-R
intervals estimated from fECG. The signal segments were
then normalized by subtracting the mean and dividing by
the standard deviation. Considering that the valve motion
events mostly happen within 350 msec following the R-
peak [10-12], this section of the DUS segments was used
for quality assessment.

2.4. Signal quality annotation

Signal quality annotation was performed in two phases,
using 345 DUS segments. In the first phase, five beats with
the closest heart rate to the median of FHR were selected
from each recording for training. Total of 285 DUS seg-
ments were presented to two medical doctors and two re-
searchers to rate the quality independently. The scoring
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was based on observing the data to identify four peaks,
corresponding to mitral closing (Mc), aorta opening (Ao),
aorta closing (Ac) and mitral opening (Mo). Five quality
levels were defined as described in table 1 and given to the
annotators as instructions on quality rating. Examples of a
very good and a very bad quality signal scored by the an-
notators are shown in figure 1. The possible ranges of Mc,
Ao, Ac, and Mo events were shaded with yellow, green,
magenta and cyan colors respectively, as guides for the an-
notators.

Inter-rater agreement was tested by Fleiss kappa test

Table 1. Description of the the quality levels used for

annotation

Quality Level  Quality Description

very good Mc, Ao, Ac, Mo peaks are clearly
detectable with no doubt.

good Although the signal is slightly noisy, at
least 3 events can be clearly detected.

borderline It is difficult to detect the events, but
some traces are observed, or at least two
events can be detected.

bad There is mostly noise, it is impossible to
detect the events.

very bad No trace of the events, only noise.

[17,18]. It calculates the degree of agreement in classi-
fication against the completely random rating. Scores of 1
to 5 were assigned to very bad to very good labels. The
signals with the average score of below 2.5 and above 3.5
were labeled as unacceptable (60 signals) and acceptable
(121 signals), respectively; while others were labeled as
ambiguous (104 signals). In the second phase in order to
balance the classes, 60 additional poor quality DUS seg-
ments as confirmed by the annotators were selected from
the recordings and labeled as unacceptable.

2.5.  Signal quality indices

Twelve features were selected mostly based on the sig-
nal properties in the valve motion ranges compared to
the remaining time intervals. The plausible valve motion
ranges were defined as: Mc:[9-44], Ao:[45-90], Ac:[200-
260], Mo:[265-326], all in msec following the segment on-
set (preceding R-peak) [10, 12]. The features were as fol-
lows and all normalized:
o The ratio of the power (SQI7), number of peaks (SQI5),
mean peak amplitude (SQI3) and variance (SQ1,) in the
valve motion range to the values in the remaining time in-
tervals.
o kurtosis (SQI5), skewness (SQIs), Hjorth (SQI7) pa-
rameters and sample entropy (SQIg: m = 1,r 0.1,
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Figure 1. Two examples of annotated signals as very good
(a) and very bad (b). The possible ranges of Mc, Ao, Ac,
and Mo events were shaded with yellow, green, magenta
and cyan colors respectively, as guides for the annotators.

SQIQ: m = 1,7“ = 0.2, SQIlol m = 2,7“ = 0.1, SQIHZ
m = 2,r = 0.2) as described in previous studies [19, 20].
o Minimum ratio of the 2nd to 1st singular value (SQ12)
from Singular Value Decomposition (SVD) of a matrix
containing consecutive windows of the signal with various
sizes: 10, 15, 20,...,100 [19,21].

2.6. Classification

An overall quality metric was obtained from the quality
features SQI1 ... .12 . A naive Bayes (NB) classifier with
kernel density estimate was used for this purpose. NB clas-
sifier is a widely used supervised learning method which is
fast and simple to implement [22,23]. It uses the training
data to estimate the conditional distribution of the features
given the classes and also distribution of the classes. Then
it assumes conditional independence of the features given
the classes which dramatically simplifies the estimation of
the probabilities. Then it estimates the posterior probabil-
ity through the Bayes rule and classifies a sample to the
most probable class. It is important to note that in practice
the features may not be independent while NB still works
properly. Since some features did not have normal distri-
bution, kernel density estimate was performed based on the
training data [23].
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10-fold cross validation was used to evaluate the classifica-
tion performance, and the accuracy, sensitivity and speci-
ficity in train and test sets were calculated.

3. Results

Inter-rater agreement results of Fleiss kappa test showed
a fair agreement with overall 0.300, C.I. (95%) of
k = [0.293 — 0.307], and p < 0.0001 confirming that the
observed agreement was not accidental. Kappa values for
the score 1 to 5 were: 0.224, 0.257, 0.232, 0.277, 0.507,
respectively.
Sensitivity (Se), was measured as the proportion of unac-
ceptable signals that were correctly identified as unaccept-
able. Specificity (Sp), was also calculated as the propor-
tion of acceptable signals that were correctly classified as
acceptable. Finally, Accuracy (Ac) was measured as the
proportion of correctly classified quality of the signals. Re-
sults are summarized in table 2.

Table 2. Average classification results (mean =+ standard
deviation) for the train and test data, based on 10-fold cross
validation.

Accuracy Sensitivity Specificity
Train  0.863+0.007 0.832+0.016 0.894£0.013
Test  0.8424+0.038 0.800+0.070  0.884+£0.059

Discussion and conclusion

The quality of the DUS signal is usually affected by
noise and also depends on the fetus-transducer orientation.
Although the DUS quality assessment has been previously
investigated, it was only targeted for improving FHR mon-
itoring [14, 15]. Results of our study show that the DUS
quality can also be assessed in more detail, based on its re-
liability for valve motion identification.

A real time feedback on the signal quality during data col-
lection would improve the quality of DUS signal for a
more accurate estimation of fetal cardiac intervals. Re-
sults show that the NB classifier can be used for an accu-
rate classification of the signal quality. NB also requires a
short computational time, can be simply implemented and
is not sensitive to irrelevant features. However further in-
vestigation of other classification techniques are required
particularly to improve the sensitivity, in order to provide
a reliable feedback to recollect or exclude the poor quality
data for further analysis. The classification performance
can also be improved by investigating better discrimina-
tive features in future studies.

A limitation of the proposed method is the dependance of
features on the predefined range of the valve motions. Al-
though the ranges were assumed wide enough to accom-
modate the variation of the intervals with age or heart rate,



the validity of the measures should be assessed for abnor-
mal cases in future studies.
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