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Abstract 

Cardiovascular and postural systems are understood to 

interact with each other to maintain equilibrium. 

Prolonged standing is known to induce postural sway, pre-

syncope symptoms and muscle fatigue. Prior work has 

shown the presence of interactions between the 

cardiovascular and postural systems during quiet stance. 

The cause-and-effect relation between the representative 

signals of the two systems remains to be established. This 

preliminary work presents a study to identify the causal 

relationship between the blood pressure waveform (BP) 

and resultant center of pressure (COPr) as well as between 

systolic arterial pressure (SAP) and COPr signals during 

quiet stance.  A 5 minute sit-to-stand experiment was 

conducted for 7 healthy young participants to acquire data 

for the SAP and COP signals.    

The statistical framework of Granger causality was 

applied to test for the bidirectional causal relation between 

the BP-COPr and SAP-COPr signal pairs. The algorithm 

computed the F-statistic and critical value from an F 

distribution for null hypothesis of no causality between the 

signals. Data were extracted for a window of 15 seconds 

length, translated with an overlap of 5 seconds over the 

last 4 minutes of the quiet stance phase to obtain 22 to 23 

time windows.  

Data for subjects rejected the null hypothesis for both BP-

COPr and SAP-COPr signal pairs. The results from this 

study suggest that during quiet stance bidirectional 

interaction exist between BP and COPr as well as between 

SAP and COPr.  

1. Introduction

It is known that the cardiovascular and postural systems 

interact together to maintain homeostasis and stability [1]. 

This interaction between blood pressure, centre of pressure 

and electromyogram have been studied using classical as 

well as wavelet based coherence analysis [1, 2].  A strong 

coherence using a wavelet based approach was reported 

between medio-lateral postural sway and blood pressure 

[2] and SAP and EMG [3]. Although coherence represents 

the degree of linear coupling between two time series data, 

it does not indicate the direction in which the information 

flow occurs [4]. Finding an answer to the question of 

directionality of information flow is critical, as, there have 

been cases with reported fainting and falling in elderly, 

astronauts and patients with neurodegenerative diseases 

[1]. 

 The existing knowledge of bi-directional causal 

interaction can be used in predicting functionality of 

physiological system. For example in case of heart rate 

(HR) and SAP, it is well established that both HR and SAP 

interact in a closed loop (bidirectional interaction) [5, 6] 

where the dominant reflex is in the direction of SAP 

changing HR via the arterial baroreflex. In a physiological 

sense, SAP is the variable in need of regulation 

(homeostasis) and HR is one of the mechanisms through 

which SAP can be changed. A similar closed loop 

interaction is yet to be established between blood pressure 

and postural sway.  

Granger causality is a statistical technique proposed by 

C.W.J. Granger in 1969 for studying causality between two 

time series data [7]. In literature Granger causality has been 

applied extensively in the fields of economics, 

neuroscience and climate science for studying the causality 

between two time series data. Motivated by above, we aim 

to find the cause-and-effect relationship between the 

cardio-postural time series data during orthostatic 

challenge under quiet standing.  

2. Materials and Methods

2.1. Experimental Data Acquisition 

Data were acquired from 7 young individuals (Age 

24.7±2.2 years, Weight 62.1±6.9 Kg, Height 1.71±0.4 m) 

during a sit to stand test. The study was approved as 

minimal risk by the research ethics board of the Simon 

Fraser University. Written and informed consent was 

obtained from each participant prior to any 

experimentation. Participants with documented or reported 

cardiovascular disease or postural complications were 

excluded from the study. All participants refrained from 

exercise and caffeine 24 hours prior to the experiment. The 

experiments were performed in a sensory input reduced 
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environment within an enclosed space. The sit-to-stand test 

required participants to be seated for 5 minutes, passively 

(assisted) transfer to standing, and maintain a quiet stance 

for the next 5 minutes. The 10 minute procedure was 

performed with eyes closed with an imaginary eye level 

gaze. This choice of removal of visual input was motivated 

by the observation where, increased postural sway, 

elevated muscle activation and change in blood pressure 

were recorded with eyes closed in comparison to eyes open 

during the experiment [1]. 

During the 10-minute period, continuous blood pressure 

measurement was acquired from finger 

photoplethysmography (Finapres, Ohmeda USA) from 

which beat-to-beat systolic arterial pressure (SAP) was 

obtained. The postural sway data in terms of vertical 

projected coordinates (medio-lateral: COPx; and anterior-

posterior: COPy) of the center of gravity were obtained 

from the force and moment data acquired with a force 

platform (Accusway Plus, AMTI USA. Resultant centre of 

pressure (COPr) was obtained from COPx and COPy as 

COP𝑟 = √𝐶𝑂𝑃𝑥
2 + 𝐶𝑂𝑃𝑦

2. All signals were sampled at 

sampling rate of 1000 Hz. Of the 10 minutes of data 

acquired during a sit to stand test, we used last four minutes 

of quite standing for processing. 

 

2.2. Granger Causality 

For two time series variables say, X and Y, the variable 

Y is said to Granger cause X if the error in predicting the 

future of X can be reduced by using the past information 

of Y along with that of X [4, 8]. The application of Granger 

causality method is limited to time series data that are wide 

sense stationary, meaning, that the mean and variance of 

these data do not change over the period of analysis [8]. 

Mathematically, Granger causality can be explained in 

terms of restricted and unrestricted models. A restricted 

model of X uses only past information of X to predict the 

future of X, whereas unrestricted model of X incorporates 

past information of another variable Y along with that of X 

to predict the future of X [8].  A restricted model of wide 

sense stationary time series X is given as; 

 

 

𝑋𝑡 =∑𝑎1𝑙𝑋𝑡−𝑙 + 𝑤1𝑡

∞

𝑙=1

 

 

 

(1) 

Where, 𝑤1 is the error in predicting the future of X using 

past information of X. Now, the unrestricted model of X is 

given as; 

 

𝑋𝑡 =∑𝑎2𝑙

∞

𝑙=1

𝑋𝑡−𝑙 +∑𝑏2𝑙𝑌𝑡−𝑙 + 𝑤2𝑡

∞

𝑙=1

 

 

 

(2) 

Where 𝑤2 is an error in predicting the future of X using 

past of both X and Y. If 𝑤2 is significantly less than 𝑤1 

then according to the definition of causality by Granger, Y 

is considered to have a causal influence on X [4, 8]. In this 

research the Granger causality test was conducted using an 

F statistics. In this method, the value of F statistics is first 

computed and then followed by critical value from an F 

distribution for a user defined significance level. The null 

hypothesis of no causality between the two time series is 

rejected for values of F greater than the critical value. 

The F statistics is computed as;  

 

 

𝐹 =

𝑅𝑆𝑆𝑟 − 𝑅𝑆𝑆𝑢𝑟
𝑘

𝑅𝑆𝑆𝑢𝑟
𝐿 − 2𝑘 − 1

 

 

(3) 

 

 Where, RSSr and RSSur are residual sum of squares of 

restricted and unrestricted models respectively, k is model 

order and L is the total number of observations used in 

estimating unrestricted model. The residual sum of squares 

for restricted and unrestricted models can be computed as 

discussed in [8]. The F statistic computed above has an F 

distribution, the degree of freedom for numerator and 

denominator being k and L-2k-1 respectively. The critical 

value of an F was determined using an F inverse 

cumulative distribution function which requires a 

knowledge of significance level of a test, degree of 

freedom in numerator and denominator. The model used 

for estimating Granger causality is very sensitive to model 

order, choosing a model order too low can cause a poor 

representation of the data while choosing a model order too 

high can cause problems in estimating the model [8]. 

Typically, model specification is chosen based on Akaike 

information or Bayesian information criteria (BIC) [9, 10].  

BIC was used in this research. 

 

2.3. Data Processing 

Data acquired during the five minutes of quiet standing 

was band pass filtered between DC (0.001 Hz) and 20 Hz 

frequency cutoff and resampled to 100 Hz. Next, last four 

minutes of data was processed to eliminate any motion 

artefacts incorporated into signal during the transition from 

sit to stand. A window of 15 seconds was chosen for 

estimating the Granger causality between a pair of 

physiological signals. The window was then translated 

over the 4-minute period with 5 seconds of overlap, this 

step resulted in the Granger causality being computed over 

multiple time windows throughout the final 4 minutes of 

standing. The small window size ensured that the segments 

of signals under analysis were in alignment with the 

stationarity assumption of the Granger causality method; 

small window size helps resolving non-stationarity issue 

[8]. Granger causality test was conducted at a significance 

level of 0.05 and number of lag was chosen to be 2 for all 

pairs and all subjects. Processing to test causality is 
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explained in Figure 1. 

 

 

Figure 1. Step by step processing to conduct a Granger causality test between cardiovascular and postural dataset.

 
Figure 2. Causality results computed between BP and COPr signal pair for 7 subjects; showing the existence of bidirectional 

interaction between BP and COPr signal pair.  

 

 

 
 

Figure 3. Causality results computed between SAP and COPr signal pair for 7 subjects; showing the existence of 

bidirectional interaction between SAP and COPr signal pair.    
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3. Results 

     The number of time-window-segments having a causal 

relationship between various signal pairs were obtained 

through the implementation of the steps shown in Figure 1.  

Bidirectional causal interactions between the BP and 

COPr as well as between SAP and COPr signal pair was 

observed. For causality analysis between BP and COPr 

signal pair, BP→COPr (11±4 windows) was dominant 

compared to reverse causality of COPr→BP (4±3 

windows). For 7 subjects total of 74 causal segments were 

found for BP→COPr compared to 24 for COPr→BP 

(Figure 2). 

Causality analysis between SAP and COPr signal 

(Figure 3) for all subjects resulted into a total of 77 causal 

segments for SAP→COPr (11±6 windows) while a total 

of 114 causal segments were found for COPr→SAP (16±7 

windows). 
 

4. Discussion 

In this research we have applied the Granger causality 

method in an attempt to establish a possible cause-and-

effect relationship between the cardiovascular and postural 

systems during the orthostatic challenge of quiet standing. 

In general, the data show a bi-directional causal 

relationship between BP and postural sway; however, 

similar to baroreflex, blood pressure appears to be the 

regulated variable, as, on average the directional causality 

of BP→COPr was thrice as prevalent as COPr→BP. 

Causal segments found for BP→COPr were consistently 

higher in number compared to reverse causality for all 

subjects except for subject 7.  

When causality of COPr was studied with SAP (upper 

value of BP peak) on an average COPr→SAP was higher 

than reverse causality of SAP→COPr. Causal segments 

found were higher in number COPr→SAP for all except 

for subject 3 and 7. This may suggest that postural sway 

initiates alterations in the SAP to maintain equilibrium.  

The results from this preliminary research highlight the 

presence of a bidirectional causal interaction between the 

cardiovascular and the postural system under orthostatic 

challenge induced by quiet standing (Figure 2 and 3). 

These results further suggest a compensatory interaction 

between the systems to maintain homeostasis. Such 

information is critical as an impairment in one system may 

cause disruption in functioning of the other, leading to 

injury due to falls or fainting. Clinical application of our 

work would need thorough analysis of other representative 

signals from the cardiovascular and postural systems. 

Additionally, analysis of data from bigger cohorts would 

be required to gain statistical power and obtain population 

wide inferences. 
 

5. Conclusion 

Our work presents a study where we performed a 

Granger causality test to investigate the cause-and-effect 

relation between the cardiovascular and postural system 

during orthostatic challenge. Based on the results obtained 

from 7 subjects, we demonstrate the existence of a bi-

directional Granger causal relationship between 

cardiovascular and postural system in which BP 

predominantly drives changes in postural sway, whereas 

postural sway drives changes in SAP. This further 

indicates a blood pressure control reflex closed loop, a 

possible postural muscle pump baroreflex, to maintain 

homeostasis.  
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