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Abstract

We previously performed parameter sensitivity analysis
in the Courtemanche-Ramirez-Nattel (CRN) human atrial
cell model, and sought to extend this to address sensitiv-
ities across spatial scales. Thus, we investigated how in-
put variability and uncertainty at cellular level propagates
through to affect tissue level dynamics.

We simulated action potential (AP) propagation in a
strip of cardiac tissue, using the monodomain and CRN
tissue/cell models. Input maximal conductances (p=12)
within the CRN model were varied within 1/3 of baseline,
and points in parameter space selected by Latin hypercube
sampling. The tissue was paced for twenty beats at 1Hz
(S1), and 6 metrics of AP shape were derived for the fi-
nal beat (max dV/dt, max voltage, resting voltage, action
potential duration to 90% repolarisation (APD90), rest-
ing voltage and APD to 50% repolarisation (APD50)). S1
pacing was followed by a single ectopic beat (S2) at dif-
ferent intervals, at one end and the midpoint of the tissue.
Additional tissue metrics were calculated, including con-
duction velocity (CV), CV and APD restitution curves and
the size of the tissue vulnerable window. Subsequently, pa-
rameter sensitivity on both tissue and cell level outputs was
performed using Partial Least Squares regression. Simula-
tions and postprocessing were performed in Nektar++ and
Matlab (Mathworks).

Regression values were smaller in tissue compared
to cell (APD90/max dV/dt R2=0.43/0.27 in tissue vs
R2=0.92/0.97 in cells). AP metrics exhibited stronger sen-
sitivities to maximal ionic conductances in single cell com-
pared to tissue simulations (sensitivity indices 0.98/0.99
for max dVdt/max voltage to GNa in cell vs 0.48/0.59 in
tissue) while CV was sensitive to GNa (0.61) and VW to
GNa (-0.58) and GK1 (-0.61). Further analysis of func-
tional metrics in tissue will determine sensitivity of tissue
to cellular changes.

1. Introduction

Atrial arrhythmias has a prevalence of 1−2% in the UK
and significantly increases risk of stroke. Despite advances
in clinical and experimental studies, the initiation and
maintenance of atrial arrhythmias remain poorly under-
stood. Theoretical investigation using computational mod-
els have become increasingly useful in developing a quan-
titative understanding of cellular and multicellular electri-
cal activity, by coupling detailed biophysics and their inter-
actions at different spatial scales. Such models continue to
grow in complexity, incorporating an ever-expanding set
of parameters; a detailed study of how changes in these
parameters affect model outputs (sensitivity analysis) is an
important research question.

We previously performed a parameter sensitivity anal-
ysis in an isolated Courtemanche-Ramirez-Nattel (CRN)
human atrial cell model [1, 2] using partial least squares
(PLS) regression, and wished to extend these analyses in
a multicellular environment. In this study we investigated
how input variability and uncertainty in a cellular model
propagates through to cellular outputs when coupled to
other cells in an idealised tissue, and how this variability
affects outputs at tissue level.

2. Methods

We simulated action potential (AP) propagation in a
thin 2D strip of cardiac tissue (50×0.5mm), using a mon-
odomain representation of the tissue, coupled to the CRN
atrial cell model. To investigated the sensitivity of the sim-
ulation outputs to inputs, we computed 100 sets of simu-
lations each with a different set of input parameters. Input
maximal conductances (p=12) within the CRN model were
varied within 1/3 of the baseline (default) value and nor-
malised to the range 0 to 1 (0.5 being the baseline value),
using Latin hypercube sampling to sample the parameter
space. A spatial resolution of 0.25mm in the tissue was
used, which represented the length of a single cardiac my-
ocyte. The tissue was pre-paced for twenty beats at 1Hz
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(S1), and 6 metrics of AP shape were derived for the final
S1 beat (max dV/dt, max voltage, resting voltage, action
potential duration to 90% repolarization (APD90), resting
voltage and APD to 50% repolarization (APD50)).

S1 pre-pacing was followed by delivering a single ec-
topic beat (S2) at varying time intervals, using two separate
protocols: one S2 beat delivered at one end of the tissue
and one at the midpoint. Tissue metrics were measured, in-
cluding conduction velocity (CV) between two points dis-
tal from the tissue edge and the size of the tissue vulnerable
window, defined as the time window during which a single
beat delivered in the middle of the tissue resulted in unidi-
rectional conduction block. Parameter sensitivity on both
tissue and cell level outputs was performed using partial
least squares regression following Sobie (2009). Parame-
ter generation and postprocessing was completed in Mat-
lab (Mathworks) and tissue simulations were performed in
Nektar++ (http://www.nektar.info).

3. Results and Discussion

Figure 1 shows sample action potentials from 25 of these
parameter sets, from single cell simulations versus corre-
sponding AP traces using the same parameters coupled to
tissue. We noticed that in general, the AP shapes were
altered when the cell was coupled in tissue with more sig-
nificant changes in the max voltage and max dV/dt, and
this had an effect on reducing the sensitivity of the AP out-
puts to the input parameters (maximal ionic conductances)
which we comment on below. This result is perhaps ex-
pected knowing that electrotonic coupling alters AP shape.
We also noticed that varying the input maximum conduc-
tances altered the conduction velocity (CV) and vulnerable
window (VW) in the tissue.

A result we wish to highlight was that, despite all 100
parameter sets produced analysable AP data in single cell
simulations, a small sample of the parameter sets (n=5)
produced outlying or unphysiological results when cou-
pled to tissue, and these were excluded from further anal-
ysis. These include one AP which had different repolari-
sation shape and resting potential within the tissue, an AP
which did not exhibit a spike and dome morphology and
APs which exhibited significantly long vulnerable win-
dows. The results from these AP runs were excluded from
further analysis.

The goodness of fit results from PLS regression is shown
in Figure 2. This showed that regression values were
smaller when computed in tissue outputs compared to cell
(APD90/max dV/dt R2 = 0.43/0.27 in tissue vs R2 =
0.92/0.97 in cells). This highlights that the quality of the
PLS regression fitting is sensitive to the goodness of the
correlation between inputs and model outputs, and so such
techniques need to be applied with care.

Nonetheless, we used the PLS regression technique to
generate a heatmap of sensitivity indices shown in Figure
3, which showed, for variation in input parameters, the rel-
ative effect it had on changes in outputs. We found that AP
metrics exhibited stronger sensitivities to maximal ionic
conductances in single cell compared to tissue simulations
(sensitivity indices 0.98/0.99 for max dVdt/max voltage to
GNa in cell vs 0.48/0.59 in tissue). At tissue level, CV
showed sensitivity to GNa (0.61) and VW to GNa (-0.58)
and GK1 (-0.61). A +0.5 value indicates that a parame-
ter input of 1 SD greater than the mean will increase the
output by half an SD.

4. Conclusions

We found, in general, that simulated behaviour of action
potentials are different in isolated cells versus tissue, and
importantly, that parameter sets that produce physiologi-
cal action potentials in single tissue may not necessarily
propagate to be meaningful at tissue scale, both physiolog-
icaly and numerically. Tissue parameters such as conduc-
tion velocity and vulnerable window were affected by cer-
tain cell-level parameters. Sensitivity analysis tools such
as PLS regression are less effective when considering un-
certainty propagation across scales and thus results from
single cell simulations should be applied with care when
extrapolating to more complex multi-scale systems. Fur-
ther work should be undertaken to analyse restitution prop-
erties or consider tissue heterogeneities.
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Figure 1: Sample action potential traces from single cell simulations (left) vs corresponding traces in tissue (right) high-
lighting differences between single cell and tissue simulations, particularly in the height of the AP upstroke and the max
dV/dt. .
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Figure 2: Predictions of the PLS regression model compared against simulated AP and tissue outputs for cell and tissue
simulations. Scatterplots of six AP outputs: dV/dtmax (top left), Vmax (top right), dome V (middle left), APD90 (middle
right), restV (below left) and APD 50 (below right). In the tissue outputs, there is additionally conduction velocity (CV)
(bottom left) and vulnerable window (VW) (bottom right). A larger R2 value is indicative of a close match between
computed outputs Y and the predicted outputs Y*. .
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Figure 3: Heatmap of sensitivity indices generated using PLS regression, for single cell (top) and tissue simulations (bot-
tom). In each graph, each row indicates how changes in input parameters lead to changes in outputs for the output corre-
sponding to the row. Each column reflects the effects of the input on all outputs.Values are mean-centred and normalised 
to SD. A +0.5 value indicates that a parameter input of 1 SD greater than the mean will increase the output by half an SD.
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