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Abstract

Atrial fibrillation (AF) is a common and increasingly
prevalent condition in the western society. During AFE, the
AV-node controls ventricular response to the rapid atrial
impulses. However, current research indicates that the in-
dividual variability in AV-nodal function is large. Thus,
characterization of the AV-node is an important step in de-
termining the optimal form of treatment on an individual
basis. Here we employ a multilevel modeling approach,
comparing a previously presented statistical model with a
novel detailed network model of the AV-nodal function dur-
ing AF. We demonstrate that both models can be fitted to
generate output that closely resembles clinical ECG data,
and that estimated parameters in the less complex model
corresponds to limited ranges of parameters in the more
complex model.

1. Introduction

Atrial fibrillation (AF) is one of the most common car-
diac arrhythmias encountered in clinical practice, occur-
ring in 1-2% of the general population. Rate-control of
AF is a commonly used treatment and several randomized
clinical trials have shown that it may be as effective as
rhythm-control medication [1]. The atrioventricular node
(AVN) plays an important role during AF since it prevents
the heart from racing by blocking atrial impulses.

Recent findings suggest that the AVN consists of two
distinct pathways, referred to as the slow pathway (SP) and
the fast pathway (FP), joining at a central node (CN) con-
nected to the bundle of His [2]. It is believed that the FP
has a faster conduction time and a longer refractory period
than the SP, giving rise to the complex rate dependent prop-
erties observed in the AVN function [3]. These properties
in turn influence the ventricular response during AF. In or-
der to optimize rate control and improve clinical decisions
there is therefore a need for quick and reliable characteri-
zation of the individual AVN.
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Only a few previous models of the human AVN exist.
Notably, Lian et al. have proposed a model treating the
AVN as a lumped structure characterised by its overall re-
fractoriness and conduction time, intended for simulation
of RR series that exhibit similar properties to those ob-
served during AF [4]. Inada et al. have proposed a bio-
physically detailed model of the human AVN action poten-
tial, based on a previous human atrial model with ion chan-
nel conductivities modified based on human mRNA levels
[5]. We have previously proposed an AVN model account-
ing for different SP and FP electrophysiological properties,
allowing estimation of model parameters from the ECG
using a maximum likelihood (ML) approach [6,7]. The
model has been used to assess the effect of rate control
drugs on AVN properties in AF patients; the estimated
changes in AVN functional refractory period were found
to be in agreement with invasive clinical data [8]. How-
ever, a drawback with the model is that several different
AVN properties are lumped in a few parameters. In or-
der to create a more realistic model of the AVN function,
a better understanding of the interaction between different
electrophysiological properties is crucial. The purpose of
the present study is to explore the properties of the individ-
ual AVN using a multilevel modelling approach.

2. Methods

In this work we combine a previously presented statis-
tical model [7], with a novel, more detailed network model
based on developments of graph based simulation methods
in [9-11]. In both models, we assume that atrial impulses
arrive randomly to the AVN according to a Poisson process
with mean arrival rate A, proportional to the atrial fibrilla-
tory rate (AFR) estimated from the atrial activity of the
ECG.

2.1.  Statisticl Model

The statistical model has been described in [6, 7].
Briefly, each atrial impulse arriving at the AVN is as-
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sumed to result in a ventricular activation, unless blocked
by a refractory AVN. The SP and FP are characterised
by their respective absolute refractory period 7, and 7y
corresponding to the shortest possible time between con-
ducted impulses, and their relative refractory period 7,
and 7,y stochastically modelling prolongation of 7, and
7 due to e.g. concealed conduction. The proportion of
atrial impulses conducted through the SP is quantified by
the parameter . Apart from AFR, the parameters, i.e.
Ts,Tf+Tp,s> Tp,f and c, are all estimated from the RR in-
terval series by means of ML-estimation.

2.2. Network Model

The network model consists of 30 nodes connected in
a Y-shape, with 10 nodes in each branch of the structure.
Each node has two dynamical properties, refractory time
and conduction delay, governed by the following pair of
equations:

R, = Rmin,r + AR7(1 - €_DI"/TR‘T) €))]
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Here, R stands for refractory time and D stands for delay,
n = 0...29 is an index over nodes, and r is an index over
branches (either FP, SP or CN). Further, R,,;, and D,
are the smallest possible refractory time and conduction
delay respectively, and AR and AD are the maximal pro-
longations in refractory time and delay. D1 is the diastolic
interval, computed as the time from the end of the last re-
fractory period until a new stimulation arrives at a given
node. Finally, 7z and 7p are time constants. Thus, R,
Din, AR, AD, 7 and 7p constitute the model param-
eters. The general structure of the model is illustrated in
Fig. 1.
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Figure 1. The figure shows the general structure of the

detailed network model. Colors correspond to unique pa-
rameter sets for FP (blue), SP (yellow) and central node
(green) respectively. For simplicity, only 3 out of 10 nodes
for each branch are shown, but the full model comprises
30 nodes as stated above.

Parameters are shared between all nodes in each branch
(marked FP, SP and CN in Fig. 1). Thus, with 3 param-
eters in each of Egs. 1 and 2, the model has a total of 18
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parameters. To simulate conduction through the model, we
assume that the outermost nodes SP and FP are simultane-
ously activated by impulses generated by a Poisson process
as described above. We then employ a modified Dijkstra’s
algorithm, as described in [10], to compute arrival times of
the impulses in all nodes while dynamically updating the R
and D properties. Finally, we derive RR-intervals by mea-
suring the time lag between consecutive impulses reaching
the outermost node of the CN branch. The network model
is able to reproduce realistic RR-histograms (as shown in
Sec. 3), as well as a number of experimentally and clini-
cally observed features, such as rate dependent switching
between branches, facilitation and concealed conduction.

2.3. ECG Analysis

RR-series and AFR obtained from 30 min segments of
ECG from 3 patients were used to explore the relationship
between the models. The ECG segments were extracted
from 24-h Holter recordings at baseline in the RATAF
(RATe control in Atrial Fibrillation) database [12]. AFR
was determined from the f-waves, using spatiotemporal
QRST cancellation [13], and subjected to spectral analysis
using a HMM-based frequency tracking [14]. The mean
impulse arrival rate A was obtained by correcting AFR to
take the atrial depolarization time into account [7]. Ectopic
beats were detected based on heartbeat morphology, using
a method described in [15]. RR intervals preceding and
following ectopic beats were excluded from further analy-
sis. This rendered one RR-series and one A-value per pa-
tient.

2.4. Parameter Estimation from RR-series

In order to use the RR-series and \-values (as described
in 2.3) to estimate parameters for network model (de-
scribed in 2.2), a genetic algorithm was employed. The
algorithm used a population of 200 parameter sets in each
generation, and a fitness function computed as the sum of
squared differences between the bins of the histograms of
measured and computed RR-series (bin centres between
250 ms and 1800 ms in steps of 50 ms), multiplied by -
1. Here, minimal and maximal refractory times of the SP
were required to be smaller than corresponding values for
the FP, while minimal and maximal conduction delays of
the SP were required to be larger than corresponding val-
ues for the FP.

Parameters for the 200 parameter sets were randomly
initialized in the ranges R, in » = 250 — 580 ms, AR, =
0 — 600 ms, Tr, = 50 — 250 ms, Dypin,r = 0 — 20 ms,
AD, = 0—50ms, and 7p, = 50 — 250 ms. For each
generation, 5000 impulses from a Poisson process were
fed into SP and FP using each of the 200 parameter sets.
This generated 200 fitness values, of which the 20 high-



est survived to the next generation. The 20 survivors were
randomly divided into 100 potentially intersecting pairs,
with each pair giving rise to a member of the next gener-
ation by contributing parameter values to the new individ-
ual with equal probability for each parameter. To main-
tain diversity, each parameter was given a 10% chance of
mutation to a new random value. The algorithm was ter-
minated when the highest fitness value crossed a thresh-
old of -0.001. At that point, the fittest parameter set was
stored and the algorithm reset. The described procedure
was repeated 1000 times for each of the three RR-series,
rendering 1000 parameter sets for each patient.

3. Results

Figure 2 shows RR-histograms for the three patients, de-
rived as described in 2.4, together with corresponding his-
tograms from the network model and fitted PDFs from the
statistical model. Since 1000 different parameter sets per
patient were estimated for the network model, only one
representative histogram per patient is shown in the figure.
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Figure 2. The figure shows RR-histograms derived from
data (blue area), from the detailed network model (black
solid line, representative examples), together with RR-
interval PDFs from the statistical model (red dashed line)
for the three patients (P1-P3 from left to right).

Inspecting the histograms in Fig. 2, some interesting
dissimilarities can be noted with respect to modality: the
histogram corresponding to P3 is tall and narrow, while
that corresponding to P2 has two distinct peaks. In be-
tween the two is P1, with a small peak around 700 ms and
a distinct one around 820 ms. As further shown in Fig.
2, the RR interval histograms generated using the network
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model and the fitted statistical model PDFs closely resem-
ble the histograms obtained from the ECG signals. Close
inspection of Fig. 2 reveal that the network model gives
a slightly higher incidence of long RR-intervals compared
to the ECG recordings, a phenomenon encountered for the
majority of parameter sets (data not shown). Also, the sim-
ulated histogram for P1 has a higher and earlier first peak
compared to the ECG data, which is seen in many of the
parameter sets (data not shown), as well as in the corre-
sponding PDF of the statistical model. For both models,
possible causes for mismatches include the model structure
itself, the modelling of the atrial impulses or the parameter
fitting procedure.

Next, each of the 3000 parameter sets for the network
model was used each parameter set to determine the ef-
fective and functional refractory periods (ERP and FRP).
Here, ERP was taken to be equal to R,y ., while FRP
was computed from simulations as the shortest RR-interval
resulting from two consecutive impulses through a given
pathway. In the statistical model, FRPs of SP and FP were
taken to be equal to 75 and 7y, respectively. Addition-
ally, minimum and maximum conduction delay through
the AVN for the network model were taken to be D,ip 1,
and Diyin. » + A D, respectively. Results are shown in Fig.
3.

Inspecting Fig. 3, it is obvious that the left col-
umn (showing ERPs and FRPs) contains the largest inter-
individual differences. The general trend is for the SP
properties to be more well constrained than the FP prop-
erties, likely owing to the fact that the SP will be the pre-
ferred conduction path for high frequency impulses due
to its shorter refractory period. Further, we see that FRP
is generally more constrained than the ERP. This is espe-
cially obvious for the SP of P2, with a 95% interval of 56
ms, spanning 333-389 ms. For all patients and both path-
ways, the 95% intervals of FRP derived from the network
model contain the FRP estimate from the statistical model.

Considering the right column of Fig. 3, showing es-
timated conduction delays, we see that all three patients
display similar ranges, and similar degrees of overlap be-
tween the 95% boxes for SP and FP, suggesting that the
conduction parameters are harder from the data used here.
However, at a significance level of p < 0.05, Dy, and
AD,. for both SP and FP are correlated with one or several
refractory time parameters, suggesting that some informa-
tion about the conduction delays can be inferred from the
data.

4. Conclusions

We demonstrate that a fixed set of statistical properties
for the RR-series correspond to limited ranges of electro-
physiological properties of the AVN, and that these can be
estimated from ECG. The estimates suggest that the re-
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Figure 3. Each row (patients 1-3) shows 1000 sets of ERPs
and FRPs (left column) and minimal and maximal conduc-
tion delays (right column) for SP (red o) and FP (green
+). Black rectangles are the minimum-area boxes includ-
ing 95% of the estimated parameters. Estimates of the FRP
from the statistical model are shown as dashed and dashed-
dotted lines in the left column.

fractory properties of FP and SP play a larger role than the
conduction delay in the emergence of bimodal RR-series
under AF.
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