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Abstract

The prediction of paroxysmal atrial fibrillation (PAF)
onset is an interesting clinical challenge, because the
chronification of this highly prevalent arrhythmia could be
avoided. Recently, the quantification of the P-wave dura-
tion variability over time has revealed a promising ability
to detect accurately the onset of PAF. However, the pos-
sible scale-dependent variations in this P-wave variabil-
ity have not been studied yet. In the present work that
variations have been analyzed by using a m-lagged cen-
tral tendency measure (CTM). Thus, once P-waves were
delineated, their time course variability was quantified by
computing CTM for lags m = 1,2, . . . ,10. Statistically sig-
nificant differences between ECG segments one-hour far
from the onset of PAF and those immediately before the
onset were obtained for every lag. Although no great dif-
ferences were observed among the CTM values obtained
for the studied lags, a predictive ability increase of about
3.5% was observed for m = 2 compared with m = 1. This
result suggests the existence of scale-dependent dynamics
within the transition process from sinus rhythm to PAF.

1. Introduction

Atrial fibrillation (AF) is the most common sustained
cardiac arrhythmia in clinical practice [1], with an increas-
ing number of patients being affected worldwide [2]. It
is expected that about 25 million people in Europe and
North America will develop AF by the middle of the 21st
century [3]. Clinically, AF can be presented in different
forms [4]. It often starts as paroxysmal (self-terminating)
and becomes more persistent with time. Paroxysmal AF
(PAF) is defined as attacks of AF lasting from several sec-
onds to less than 7 days, and spontaneously reverting to
sinus rhythm. Persistent AF lasts more than 7 days, but
responds to external interventions such as cardioversion or
ablation, while permanent AF does not respond to therapy.
In this last stage of the arrhythmia, both the patient and the

clinician make a joint decision to stop further attempts to
revert AF, and only interventions to control the heart rate
are pursued. Approximately, between 15 and 31% of PAF
patients progress to persistent AF during a time period be-
tween 4 and 8 years [5, 6].

Even though PAF is self-limited, it can lead to serious
complications, including decreased exercise capacity and
quality of life, thromboembolic events or congestive heart
failure [7,8]. Furthermore, PAF recurrences are associated
with increased cardiovascular morbidity and mortality [9].
Hence, once a PAF episode terminates spontaneously, the
prediction on when a new one will start is a very relevant
clinical challenge.

Intensive efforts have been carried out in the last decade
to find out markers able to predict PAF onset from the elec-
trocardiogram (ECG) [10]. The P-wave has been widely
analyzed because it is the atrial depolarization result and,
hence, characterization of alterations in its morphology
may provide information about the underlying AF mecha-
nisms [11]. Indeed, a prolonged P-wave duration is today
a clinically accepted risk marker of AF [11]. Moreover,
many authors have also associated P-wave prolongation
with development of arrhythmias after bypass surgery [12]
and progression from paroxysmal to persistent AF [13].

More recently, linear and non-linear estimations of the
P-wave duration variability just before the onset of PAF
have also provided a relevant ability to detect accurately
this event [14, 15]. However, these analyses have not paid
attention to the possible scale-dependent variations in the
P-wave duration variability over time. Thus, the main goal
of the present work is to assess whether the P-wave dura-
tion variability computed from different scales could reveal
useful information able to improve the prediction of PAF
onset. A lagged central tendency measure (CTM) is pro-
posed because it can easily summarize the degree of vari-
ability in a time series for different time scales by using
chaotic modeling [16].
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2. Methods

2.1. Study population

The database consisted of 46 patients (18 men, mean age
of 63.2 ± 10.2 years) suffering from idiopathic PAF, i.e.,
none of them suffered from heart disease, hyperthyroidism
or pulmonary disease. Moreover, no patient was under
anti-arrhythmic drug treatment at the time of the study.
From the 24-h Holter ECG recording of each patient, ex-
pert cardiologists annotated AF episodes, defined by irreg-
ular ventricular response and absence of P-waves [17]. The
number of arrhythmic events per patient was 2.9 ± 1.8 in
average, with a mean duration of 4.1 ± 2.2 hours. The
shortest episode duration was 59 minutes.

From each patient, the longest sinus rhythm interval in
the recording was selected and the two hours preceding
the onset of PAF were analyzed. To evaluate the ability
of CTM to follow P-wave alterations in different lags, the
interval under study was divided into two one hour-length
segments. The first set of segments comprised the hour im-
mediately before the onset of PAF, which will be referred
to as ECG segments close to PAF. The second set com-
prised those segments one hour away from the episode on-
set and will be named as ECG segments far from PAF.

2.2. Computation of the P-wave duration

Following previous recommendations about time and
amplitude resolutions for appropriate P-wave analy-
sis [18], the 24-h Holter recordings were acquired with a
sampling rate of 1000 Hz and 16-bit resolution over an am-
plitude range of ± 10 mV. Moreover, although three leads
were recorded (II, aVF, and V1), only V1 was considered
in the study because the P-waves were larger in this lead.

The lack of a standard definition of the P-wave onset and
offset motivated the use of an automatic delineator based
on the phasor transform to determine the P-wave fiducial
points [19]. This algorithm has been validated making use
of databases manually annotated by expert cardiologists,
providing sensitivity of 99.27% and positive predictivity
of 98.75% in the P-wave detection [19]. Furthermore, the
algorithm is able to delineate the P-wave with notably re-
duced location errors. Indeed, even in the presence of noise
provoking a remarkable P-wave distortion, the delineator
provided location errors lower than 8 ms [19]. The differ-
ence between the automatically detected P-wave onset and
offset was defined as its duration.

2.3. Lagged central tendency measure

CTM is a quantitative measure of variability computed
from a difference plot [16, 20]. Given a time series x[n]
and a lag m, the m-order difference plot corresponds to the

graph x[n+m+ 1]− x[n+m] versus x[n+ 1]− x[n]. This
plot is centered around the origin such that selecting a cir-
cular region of radius ρ , CTM is computed by counting the
number of points that fall within the radius and dividing by
the total number of points. In this way, a low CTM value
indicates a large amount of dispersion and a high value in-
dicates concentration near the centre [20]. Variability of
the P-wave duration over time was characterized by com-
puting CTM from lags of m = 1,2, . . . ,10.

From a strictly mathematical point of view, given N data
points from a time series x[n], N−m−1 would be the total
number of points in the scatter plot. Then, m-lagged CTM
can be computed as

CT M(m) =
∑

N−m−1
i=1 δm[i]
N −m−1

, (1)

where

δm[i] =
{

1, if
√

dm[i]< ρ,
0, otherwise.

(2)

dm[i] being the i-th point module, defined as

dm[i] = (x[i+m+1]− x[i+m]
)2

+
(
x[i+1]− x[i])2. (3)

Although the radius ρ is critical in determining the out-
come of CTM, no guidelines exist for optimizing its value.
Hence, it is usually chosen depending upon the character
of the data. In the present study an approach similar to
the developed in previous works was used [20, 21]. Thus,
for each studied lag CTM was first computed from radius
of ρ = 10,11,12, . . . ,200 ms. Then, for each considered
ρ statistical differences between ECG segments far from
PAF and close to PAF onset were assessed by meas of a
U Mann-Whitney test. Finally, the optimal selected radius
was determined as the one providing the lowest statistical
significance (p-value).

2.4. Performance assessment

The ability of CTM computed from every lag m to dis-
criminate between ECG segments far from PAF and close
to PAF was evaluated by means of a ROC curve. This
plot is the result of plotting the fraction of true positives
(TP) out of positives (sensitivity) against the fraction of
false positives out of the negatives (1−specificity) at vari-
ous threshold settings. Sensitivity was here considered as
the percentage of ECG segments close to PAF which were
correctly classified. In a similar way, the rate of the ECG
segments far from PAF properly identified was considered
as the specificity. The optimal threshold was selected as
those that provided the highest percentage of ECG seg-
ments correctly classified (i.e. accuracy).
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Figure 1. Mean CTM computed for different lags from
the ECG segments far from PAF (•) and close to PAF (N).

3. Results

After computing CTM from every lag, the radius ρ pro-
viding the highest statistical differences between ECG seg-
ments far and close to PAF ranged from 70 to 75 ms.
Once the optimal radius for every lag was chosen, Figure 1
shows its influence on CTM within each group of seg-
ments. To this respect, ECG segments far from PAF pre-
sented mean CTM values higher than those close to PAF
for every lag. However, the lowest differences between
groups were noticed for m = 1. In this case the mean and
standard deviation of CTM were 0.984±0.015 for ECG
segments far from PAF and 0.948±0.112 for those close
to PAF. Contrarily, CTM for m = 2 yielded the highest dis-
tance between groups. Thus, values of 0.991±0.014 and
0.935±0.105 were respectively obtained.

Differences between m = 1 and m = 2 were seen for
higher lags. Nonetheless, it should be noted that these dif-
ferences were not too large. Indeed, a U Mann-Whitney
test provided statistically significant differences between
both groups for every lag. Moreover, Figure 2 does not
show very dissimilar m-order difference plots from lags of
m = 1,2 and 10 for typical ECG segments far from PAF
and close to PAF. Only a slight trend towards a more cir-
cular plot was observed for m ≥ 2.

In line with these findings, no great differences were ob-
served from classification results into ECG segments far
from PAF and close to PAF, such as Figure 3 displays. In
fact, the maximum distance among sensitivity and speci-
ficity values was only about 8%. Nonetheless, an accuracy
increase from 80.43% to 83.70% for m = 1 and m = 2 was
also noticed. For higher lags accuracy was 81.52%.

4. Discussion and conclusions

According with a previous work where one-lagged CTM
was studied [15], a notable progression in the P-wave du-
ration variability over the two hours preceding the onset
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Figure 2. Illustrative example of difference plots for lags
m = 1,2 and 10 from a typical ECG segment far from PAF
(left column panels) and another ECG segment close to
PAF (right column panels).

of PAF was successfully quantified from every lag. As ex-
pected, a higher variability was also seen when the arrhyth-
mia onset approximated (see Figure 1). Thus, CTM values
closer to unity were observed for the ECG segments far
from the onset of PAF. Although no great differences were
observed among the CTM values obtained from the stud-
ied lags, an accuracy increase of about 3.5% was observed
when m = 2 was used instead of m = 1 (see Figure 3).
Moreover, slightly changed difference plots were also no-
ticed for m ≥ 2 compared with m = 1 (see Figure 2). These
results suggest that the transition from sinus rhythm to PAF
may be a process with a scale-variant structure. This sug-
gestion seems to be coherent with the highly inhomoge-
neous and fragmented atrial conduction preceding the on-
set of PAF [11].

The early use of pacing and drug treatments may prevent
the recurrence of subsequent PAF episodes, thus yielding
electrical stabilization and avoiding that PAF turns into
persistent AF [5]. Hence, given this clinical interest, fur-
ther studies are required to validate more robustly the ob-
tained findings. To this respect, the analysis of a wider
database would be desired to assess the reproducibility of
the results.
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Figure 3. Classification results (accuracy •, sensitivity N
and specificity �) obtained from CTM as a function of the
considered number of lags.
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