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Abstract

Optimizing defibrillation times may improve survival
from ventricular fibrillation (VF) cardiac arrest. VF
waveform analysis is one of the best non-invasive decision
tools for shock outcome prediction. This study introduces
a VF-waveform feature based on the computation of the
sample entropy (SmpEnt) for shock outcome prediction.

A database of 255 shocks were analyzed, using a
5 s preshock ECG segment. 14 classical VF waveform
features measuring amplitude, slope, complexity and
spectral characteristics were computed in addition to
SmpEnt. An optimal detector of successful shocks was
designed for each feature minimizing the Balanced Error
Rate. Finally, the minimum preshock segment duration
assuring an accurate shock outcome prediction was
determined for SmpEnt.

SmpEnt is an improved shock outcome predictor, even
for VF-segments as short as 1.5-s, and it could be used
as a decision support tool to guide optimal timing for
defibrillation.

1. Introduction

Many factors contribute to poor outcomes from
cardiac arrest including delays in cardiopulmonary
resuscitation (CPR), frequently interrupted or ineffective
chest compressions (CC), and delayed access to electrical
defibrillation [1] .Unnecessary CC interruptions adversely
affect to the probabilities of survival of the patient
[2]. Repetitive and futile defibrillation shocks decrease
the chances of survival because shocks may produce
myocardial damage [3]. Consequently, the decision of
whether to defibrillate or continue with CCs may be critical
for the survival of the patient. Ideally, the patient would
only be shocked when defibrillation has a good prognosis,
and this involves the development of tools for shock
outcome prediction.

Among all non-invasive decision guides, ECG analysis
of the ventricular fibrillation (VF) waveform might be one
of the best ways to decide whether or not to interrupt CCs

to deliver a defibrillation shock [4]. Over the years many
VF-waveform features [5,6] and decision algorithms based
on the features [7] have been introduced for shock outcome
prediction. Authors have proposed features based on the
time-domain, slope and spectral analyses of the ECG, and
on complexity measures of the VF-waveform [8].

In this study we introduce a new shock outcome
predictor based on the sample entropy (SmpEnt) analysis
of the VF-waveform, and we compare it to previously
presented features. We then analyze the minimum ECG
segment duration needed for an accurate prediction based
on SmpEnt. The analysis is based on data obtained from
out-of hospital cardiac arrest (OHCA) patients treated by
the Basic Life Support (BLS) services of the Basque
Health Service, Osakidetza.

2. Methods

2.1. Data collection and annotation

Data were collected from 511 patients who suffered
OHCA in the Basque Autonomous Community between
January 2013 and December 2014. The Basque
Emergency Service is a two-tier system and data
corresponded to patients in which BLS was first at
scene, and therefore the patients were connected to
automated external defibrillators (AED). The ECG and
thoracic impedance (TI) data was recorded using Lifepack
500/1000 defibrillators (Physio-Control, Redmond, WA,
USA) with resolutions and sampling frequencies of
4.8µV/0.81 mΩ and 125/60 Hz, respectively. ECG and
TI data, defibrillator messages and CC-instant information
data was converted to an open matlab format using
PhysioControl’s LIFENET research tool and all signals
were resampled to a common 250 Hz sampling frequency.

Shocks were automatically identified using the messages
from the defibrillator, and 100 s records of the ECG/TI
signals were extracted with 30 s preshock for VF waveform
analysis and 70 s postshock to analyze the outcome. The TI
signal was used to identify intervals during CCs in which
the waveform cannot be analyzed or the resulting rhythm
cannot be accurately determined. Successful shocks were
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those that restored an ECG with sustained QRS complexes
and a minimum rate of 30 bpm within the post-shock
interval [4]. Figure 1 shows examples of (un)-successful
shocks.

From the 511 patients analyzed only 143 presented
shockable rhythms, and a total of 411 shocks were
delivered. In some cases the resulting rhythm was
impossible to annotate (end of record), there was noise
before defibrillation, shocks were inappropriate, or the
analysis was conducted during CCs. These shocks were
discarded leaving a total of 255 shocks from 92 patients
for analysis, 65 (43 patients) were successful and 190 (67)
unsuccessful.

2.2. Shock outcome predictors

ECG shock outcome predictors were computed using a
5-s ECG segment ending 1-s before the shock annotation.
The ECG signal was preprocessed using an order 4
bandpass elliptic filter with 1/30 dB passband/stopband
ripple, and a typical AED bandwidth of 0.5-30 Hz. A
backward-forward filtering scheme was used to avoid
phase distortion, and the filter eliminated base line
distortion and high frequency noise while preserving all
the VF spectral components. The preprocessed segments
were used to compute the following VF-waveform features
grouped by analysis domains (see [5, 6] for a detailed
mathematical description of the features):
• Time Domain. The features computed were: Amplitude

Range (AR), average peak-to-peak amplitude (PPA) and
Mean Amplitude (MA).

• Slope domain. The slope was defined as the first
difference of the preprocessed ECG, and the following
features were computed: Mean Slope (MS) and the
Median Slope (MdS).

• Spectral Domain. A Hamming window was applied
and a 2048-point FFT of the ECG segment was
computed, spectral amplitude was defined as the
modulus of the FFT and the power spectral amplitude
as the square of the modulus. The computed features
included: Amplitude Spectrum Analysis (AMSA),
Peak Frequency (PF), Centroid Frequency (CF), Energy
(ENRG), Max Power (MP), Centroid Power (CP) and
Power Spectrum Analysis (PSA).

• Complexity Domain. Two measures of complexity
were computed: Spectral Flatness Measure (SFM) and
Spectral Entropy (SpecEnt).

In addition SmpEnt is introduced as a shock outcome
predictor. SmpEnt is a useful tool to analyze the regularity
and complexity of a time series, in our case of the
VF waveform [9]. The basic hypothesis is that a VF
with more complex rhythm dynamics corresponds earlier
phases of VF and a better state of myocardial tissue,
and should therefore be more amenable to electrical
defibrillation. Sample Entropy is the negative logarithm
of the conditional probability that two sequences similar
for m points remain similar for m + 1 points, excluding
self-matches. To compute SmpEnt the ECG was
downsampled by a factor of 4 (fs = 62.5 Hz), m = 3
and the tolerace for matches was set to r = 0.2 · std, with
a minimum value of r = 0.05. The minimum value of
r avoids confusing high frequency noise with VF spectral
components in very low amplitude VF.

2.3. Data analysis

Shock outcome prediction was first evaluated in
terms of sensitivity (Se) and specificity (Sp), defined
as the proportion of correctly identified successful and
unsuccessful shocks, respectively. A receiver operating
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Figure 1. Examples of ECG signals corresponding to successful (top) and unsuccessful (bottom) shocks. In the first
example the VF waveform presents a higher fibrillation frequency and larger amplitude, and QRS complexes appear
immediately after the shock. In the second case, VF frequency and amplitude are lower, and the shock results in the
lack of electrical activity (asystole).
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characteristics (ROC) analysis was conducted, and the area
under the curve (AUC) was determined as a global measure
of the features’ discriminative power. Two cut-off points
were defined, the Se for a 90% Sp and the Sp for a 90% Se.
In all analyses the successful/unsuccessful samples from
each patient were weighted, so all patients within a group
contributed in the same way to the analysis.

Then a single feature support vector machine (SVM)
classifier was fitted to determine the optimal working point
for each feature. The performance for the optimal working
point was estimated using a leave one patient out cross
validation (LOPCV) scheme. Optimal classifiers were
determined in each fold by minimizing the Balanced Error
Rate (BER), defined as:

BER = 1 − 1
2 ·

(
Se + Sp

)
The same LOPCV scheme was used to compute the
following measures of performance: Se, Sp, positive
predictive power (PPV), negative predictive power (NPV)
and BER. The same methodology was applied to develop a
multi-feature SVM classifier using both sequential forward
and backward feature selection (SFS/SBS).

Finally the minimum ECG segment length was
determined for an accurate shock outcome prediction
based on SampEnt. For an analysis segment ending
1-s before the shock, the segment length was gradually
increased from 0.5-s up to 5-s, an optimal SVM classifier
was fit and Se/Sp and BER were determined.

Feature Se (Sp=90) Sp (Se=90) AUC
AR 44.6 50.3 0.800
MA 38.8 42.5 0.792
PPA 33.9 67.6 0.837
MS 41.1 64.0 0.842
MdS 39.5 69.7 0.844

AMSA 51.6 57.1 0.835
PF 14.0 40.8 0.700
CF 12.8 28.1 0.668

ENRG 39.2 48.9 0.789
MP 28.8 42.5 0.729
CP 26.4 43.5 0.727

PSA 52.0 61.3 0.837
SFM 13.6 25.5 0.624

SpecEnt 20.5 19.9 0.604
SmpEnt 38.1 59.7 0.840

Table 1. ROC analysis of the VF detection features
computed using 5-s segments in terms of sensitivity (Se),
specificity (Sp) and AUC

3. Results

Table 1 shows the results for the ROC analysis. The
table shows several features (from all analysis domains)
with AUCs well above 0.8, including PPA, MS, MdS,
AMSA, PSA and SmpEnt. When an LOPCV analysis
was conducted to determine the optimal working point
for each feature, SmpEnt showed the best performance
with a BER of 0.18, as shown in Table 2. The combined
Se/Sp values for the optimal working point were 83.6%
and 79.7%, respectively. A multi-feature SVM classifier
did not improve the BER results. In fact a SFS approach
resulted in a classifier based only on SmpEnt. The SBS
approach on a classifier based on MA, PPA, MdS, AMSA,
ENRG, MP and CP with an under performing BER of 0.22.
So, classification based only on SmpEnt yielded the best
results.

Finally, figure 2 shows how shock outcome prediction
based on SmpEnt changes as a function of the length of the
analysis interval (segment). The figure shows the BER but
also how Se and Sp change for different segment durations.
For segment durations over 1.5-s the BER is consistently
under 0.22, so 1.5-s was considered the minimum segment
duration for an accurate shock outcome prediction based
on SmpEnt.

4. Discussion

In this study we have introduced SmpEnt as a shock
outcome predictor, and compared its performance to
14 previously reported VF-waveform features, using a

Feature Se Sp PPV NPV BER
AR 42.7 87.0 67.9 70.3 0.351
MA 39.2 84.0 61.1 68.3 0.384
PPA 80.1 76.1 68.2 85.6 0.219
MS 78.9 77.6 69.4 85.2 0.217

MdS 81.2 77.4 69.7 86.5 0.207
AMSA 73.0 78.2 68.2 81.9 0.244

PF 47.1 70.6 50.7 67.5 0.412
CF 40.4 83.9 61.7 68.7 0.379

ENRG 36.9 89.6 69.5 68.9 0.367
MP 20.5 95.6 75.2 65.2 0.419
CP 14.7 96.4 72.4 63.8 0.444

PSA 55.3 84.2 69.2 74.6 0.302
SFM 9.3 96.5 63.2 62.4 0.471

SpecEnt 13.6 88.6 43.3 61.5 0.489
SmpEnt 84.3 79.7 72.7 88.8 0.180

Table 2. Analysis of optimal working point of the VF
detection features computed using 5-s segments in terms
of Se, Sp, PPV, NPV and BER
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Figure 2. Evolution of BER and Sp/Se as a function of the
segment duration.

database of 255 shocks extracted from patients treated
by BLS personnel. For a single feature classifier,
SmpEnt had the lowest BER of all the features, and
the addition of features did not improve the classifier’s
performance. Furthermore, SmpEnt showed improved
detection performance for segments as short as 1.5-s.
During BLS, SmpEnt could be used as a decision support
tool to guide optimal timing for defibrillation.

Our results match those of Firoozabadi et al. [6],
except for SFM and CF which in our data had much
poorer performance. The AUC values and the Se/Sp
values are in line with most studies based on classical
parameters such as AMSA or MdS [4,8]. SmpEnt provides
a marginal prediction improvement when compared to
classical features. Our results also suggest that combining
features does not improve shock outcome prediction
based on SmpEnt, although a recently published study[7]
reported improved shock outcome prediction results for
an SVM classifier based AMSA, MdS and amplitude
(SmpEnt was not studied). In general most VF-features
analyzed showed very large correlation coefficients on
our data (Rij > 0.9), which suggests that these features
may be equivalent approaches to quantifying the same
underlying physiological state of the VF rhythm. A
possible approach to improve outcome prediction may
then be the addition of information derived from other
signals, such as the capnogram [7], or the inclusion of data
on the state of resuscitation efforts (CPR quality, arrival
times, ...).

Finally, shock outcome was defined in terms of the
appearance of QRS complexes after the shock, in line
with most previous studies [4, 8]. Other definitions of
shock outcome, to better match the clinical outcome of the

patient, were left for future studies. These criteria may
include hospital admission, restoration of spontaneous
circulation during resuscitation or neurological outcome at
hospital discharge. These studies require matching clinical
data from the patients to the analysis conducted in the
present study.
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