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Abstract

In this paper, a new approach to the problem of
detecting the end of the T wave (Te) on the
electrocardiogram (ECG) using Multilayer Perceptron
(MLP) neural networks is proposed and evaluated. The
approach consists of a neural network acting as a
regression function that estimates the Te location using
the samples between two consecutive R peaks. The input
vectors were taken using three dimensional reduction
methods (Discrete Cosine Transform, DCT, Principal
Component Analysis, PCA and resampling, RES) over a
window of 100 samples. For training, Bayesian
regularization has been used. A total of 1536 neural
networks were trained. The results show that PCA and
DCT are more feasible than RES as dimension reduction
methods. Finally, a brief comparison with other
algorithms proposed in the literature is included.

1. Introduction

The T-wave end point (Te) is in a slow transition zone
of the electrocardiogram (ECG) signal, which is usually
contaminated by noise and interference in ambulatory
ECG. The standard deviation of the QT is small (<20 ms)
for both healthy and pathological subjects. This requires a
very high accuracy and precision for Te point detection
algorithms.

There are several approaches proposed in the literature
for the Te estimation. Vila et al. [1] presented a TU
complex detection based on a mathematical model.
Martinez et al. [2] used a quadratic spline wavelet at four
dyadic scales for delineation. Other approaches are based
on area computation [3, 4] and area-curve length indicator
over the wavelet transform of the signal [5]. The partially
collapsed Gibbs sampler was used in [6] and a
mathematical model of a skewed Gaussian function
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combined with trapezium area method is described in [7].

This paper examines a new approach for Te detection
using neural networks and methods for dimension
reduction. Although the training of neural networks is a
time-consuming operation, the advantage of the increased
sensitivity is of greater importance than the added time
delay, especially when dealing with Holter records which
may have more than 80 000 beats. Moreover the training
can be optimized through the selection of a small and
representative dataset by the cardiologist, making this
issue negligible.
2. Materials and methods
Detecting the Te point can be viewed as the problem of
finding some function that estimates the position of Te
from the samples contained in the interval between two
consecutive R peaks. In practice, due to heart rate
variability, RR intervals contain a variable number of
samples. Then, this general form of stating the problem is
not practical since it involves to find a function with
variable dimensions. To avoid this problem, it is possible
to use a fixed-size window, i.e., the domain of such
function has dimension n (n fixed), see Figure 1.
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Figurel. Mapping function ®(X), the input signal

samples (x) determines the distance of Te (y) to a
reference point.
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Now, the problem is to find a mapping ®(X) function

between X € R" and Yy € R where Y is the location of

the Te starting from a reference point.
This study focuses on Multilayer Perceptron (MLP)

neural network architectures to estimate D(X) using

Bayesian regularization for training. The dataset used was
the QT Database (QTDB) [8]. The QTDB was designed
for evaluating the performance of algorithms for event
detection on ECG. It consists of short segments (15 min)
extracted from 105 Holter recordings, each with two
channels. All records have a sampling frequency of 250
Hz. 3542 Te were annotated by one cardiologist. Another
cardiologist has annotated 402 Te in 11 recordings.

2.1.  Pre-processing and segmentation

The pre-processing stage uses a fourth order band-pass
Butterworth filter to deal with both baseline wandering
and high frequency noises. The cut-off frequencies were
0.5 Hz and 50 Hz for high-pass and low-pass
respectively.

The R-peak detection algorithm used is based on
parabolic fitting [9]. The segmentation is as follows: for
each annotated beat, a 100 samples vector (400 ms) is
extracted from a reference point at R + 200 ms (R is the
R-peak location of the current ECG beat), see Figure 2.

Reference Pt.

Figure 2. Window selection for segmentation.

The 200 ms offset intends to skip the samples from the
QRS complex. Then, mostly samples from the current T
wave will be considered. This process is expressed as:

X, = S[R, +200: R +600] (1)

Where s corresponds to the signal and R; represents the
time location of the R-peak for the current beat, xi is the

100 samples vector for each beat.
The target output (y;) for each vector is:
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where Tej, corresponds to the Te annotated by the
cardiologist. The values of y; were normalized from 0 to
1, via a division by 400 ms.

2.2. Methods for dimensional reduction

The number of components of each xi is 100, this
dimension is still large to be used as input to the
regression algorithm (neural network), therefore, three
different dimension reduction (DR) techniques are used:
resampling (RES), Discrete Cosine Transform (DCT) and
Principal Component Analysis (PCA).

The resampling (RES) operation takes a x; vector and
applies it to a sub-sampler system.The sub-sampler
consists of two functional blocks, an anti-aliasing filter
(H(2)) and a decimator defined as (see Figure 3).

%,[k]=x[kD],DeN,D =0 3)

where D is the decimation factor. This paper uses D =
6 because 100 samples in the input reduce to 16 samples
at the output (the number of input neurons, see Figure 4).
The anti-aliasing filter is a low-pass FIR designed with
the LMS algorithm using a Kaiser window.

)

Figure 3. Sub-sampler system structure.
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The DCT is the discrete form of the Cosine Fourier
Transform (CFT), and it is written as.

mnk
N -1

y(k) = a(k)E X, cos(

1
IN’
2

\/7; I<k<N-1
N

PCA takes the projections of a vector over the
subspace generated by the M eigenvectors associated to
the M largest eigenvalues from the covariance matrix of
the data, defined as.
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Next, the following eigenvalue problem needs to be
solved:



Av=Cv AZ20AvVeR"\{0} (6)

Projecting the input over the subspace generated by the
M vectors (M<N) associated to the greatest eigenvalues
results in a dimensional reduction of the data.

2.3. Multilayer Perceptron and Bayesian
Regulation

The used MLP networks have three layers: input,
hidden and output. For each technique of dimensionality
reduction, a set of MLP networks were trained varying
the number of input neurons from 1 to 16, and the number
of hidden neurons from 1 to 32, resulting in 512
architectures per method, see Figure 4.
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Figure 4. General diagram for MLP-based Te detectors

The activation functions for the hidden and output
layers are the hyperbolic tangent (tanh) and linear
function, respectively. The training function is
Backpropagation-Bayesian Regulation. The training error
function used is:

£ Yl0)-y ) +1 Tl g

where @(X) , is the output of the neural network given

the pattern xi, and @; represents all the weights and

biases of the neural network. The second term in the
expression (7) is the weight decay regularizer.

To prevent outliers in the training, the whole data set
was filtered using the following constraint: given a pair
P =(x;,Y;), Pi will be eligible as a training sample if and

only if y; belongs to the range [-0.5, 1.5] i.e. the Te point
is inside the 800 ms window. Using this criterion, only
106 beats (~1.5%) were excluded.

A new training subset is randomly generated from the
eligible dataset every time the number of input neurons
(or components at the output of the DR stage) changes.
30% (2093 pairs) of the eligible dataset was used as
training set.

The performance measure used to evaluate the
generalization of the network was the precision (standard
deviation of the error in milliseconds) over the validation
set:

(®)

where V is the number of patterns in the validation set,
i.e. V=4885.

3. Results and discussion

The precision in validation for each dimensional
reduction method is distributed according to the following
ranges (all values in milliseconds): o(PCA) = [35.22,
70.77]; o(DCT) = [34.94, 117.63] and o(RES) = [33.43,
68.37]. Figure 5 shows the distribution of the values of
precision in 10 ms intervals.
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Figure 5. Distribution of the precision in validation for each DR method



Using as reference the 30-40 ms interval (344 neural
networks with the best results), the approaches that use
the DCT and PCA methods are the biggest group (~80%)
on this interval. Conversely, RES represents only 20% of
the total. Hence, RES approach produces fewer
architectures with acceptable performance (¢ <40 ms).
This is because the effectiveness of the RES method
heavily depends on preserving a high number of
components (12 to 16). Also, the RES method shows the
worst overall mean value of precision (51.17 + 9.22 ms).
Both approaches, PCA and DCT have better mean
precision than RES, for DCT the mean value of precision
is 45.65 + 14.72 ms while for PCA the mean precision is
46.17 £ 9.48 ms.

In conclusion, the RES approach requires the use of a
greater number of features, making it less effective in
reducing the size of the network in comparison with the
other two methods. However, this does not mean that the
RES method cannot produce good results. Table 1 shows
the evaluation of the best architectures for each approach
using the criterion “best beat per cardiac cycle”, Martinez
etal. [2].

Table 1. Best results for each dimensional reduction
method

Method  Neural Network  Error: m + std (ms)
DCT 16-31-1 -0.06 + 15.45
PCA 16-29-1 -0.50+15.34
RES 16-19-1 -0.12 £ 15.06

The results of the Te detection algorithms reported in
the literature are shown in Table 2. The proposed method
allows building MLP-based Te detectors with
performances comparable to those of the state of the art.

Table 2. Algorithms for detecting the Te on the ECG

Detector Error: m =+ std (ms)
Madeiro et al. [7] 2.80+15.30
This work (best precision) -0.12 £ 15.06
Vazquez et al. [4] 1.98 £16.90
Lin et al. [6] 4.30 +£20.80
A. Martinez et al. [10] 5.80+22.70
Ghaffari et al. [5] 0.80 +10.70
Zhang et al. [3] 0.31+17.43
This work (best accuracy) -0.06 £ 15.45
Martinez et al. [2] -1.6 £18.10
Vilaetal. [1] 0.80 +30.30

The accuracy (mean error value) of the three MLP-
based Te detectors is comparable to the accuracy of
Zhang’s method (the best). Meanwhile, the precision is in
the range of the method of Madeiro et al. [7], the second
best one after Ghaffari's method.
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