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Abstract 

This study was aimed at detecting the structure of the 
physiological network underlying the regulation of the 
cardiovascular and brain systems during normal sleep. 
To this end, we measured from the polysomnographic 
recordings of 10 healthy subjects the normalized spectral 
power of heart rate variability in the high frequency band 
(HF) and the EEG power in the , , , , and  bands. 
Then, the causal statistical dependencies within and 
between these six time series were assessed in terms of 
internal information (conditional self entropy, CSE) and 
information transfer (transfer entropy, TE) computed via 
a linear method exploiting multiple regression models 
and a nonlinear method combining nearest neighbour 
entropy estimation with dimensionality reduction. The 
statistical significance of CSE and TE was assessed using 
an F-test for the linear method, and an empirical 
randomization test for the nonlinear method. Both 
approaches consistently detected structured networks of 
physiological interactions, revealing (i) strong internal 
information in all systems; (ii) information transfer 
directed predominantly from heart to brain; (iii) 
bidirectional interactions between HF and  EEG power. 
Moreover, the nonlinear method evidenced higher 
information flowing out of the  node. These results 
highlight the potential of the information-theoretic 
framework to assess linear and nonlinear dynamics 
manifested in the functional network that underlies the 
autonomic regulation of cardiovascular and brain 
functions during sleep. 

1. Introduction

The dynamics of complex physiological systems can 
often be explained as emerging from the activity of 
multiple system components, which exhibit autonomous 
dynamics but also interact with each other producing 
nontrivial collective behaviours [1]. A typical example is 
the brain, in which several connected neural units can be 
interpreted as the nodes of a network that is functionally 

organized to serve specific physiologic or cognitive 
processes. Extending this view to the whole human 
organism, the brain can be seen as an individual 
physiological system that has the capability to store 
information but also to share information with other 
systems, like the cardiovascular system, in order to 
preserve the physiological function [2]. This complex 
exchange of information among physiological systems is 
state dependent: for instance, it is well known that sleep 
has a profound impact on both cardiovascular and brain 
regulation, and that the stage organization of sleep 
reflects rhythmic variations of the activity of the 
autonomic nervous system [3]. 

In this context, the present paper deals with the 
description of physiological networks framed in the field 
of information dynamics [4], which provides entropy-
based measures quantifying how information is generated 
and then processed inside the observed network of 
interacting dynamic systems. Specifically, we aim at 
quantifying the structure of the networks of brain-
cardiovascular and brain-brain interactions during sleep, 
considering the cardiovascular system and the brain as 
dynamical systems whose states are described by the 
overnight time course of the amplitude of the cardiac 
parasympathetic component of heart rate variability and 
of the different EEG waves, respectively. These networks 
are identified in 10 young healthy subjects by means of 
specific entropy-based measures of internal information 
and information transfer, i.e. the conditional self entropy 
(CSE) [5] and the transfer entropy (TE) [6]. In order to 
investigate the impact of nonlinear dynamics on the 
detected network structures, these measures are computed 
following both linear model-based (MB) and nonlinear 
model-free (MF) estimation approaches [7]. 

2. Information dynamics

Let us consider an overall dynamical system composed 
of M possibly interacting subsystems, and assume that the 
states visited by the subsystems across time are described 
by the stochastic process S={S1,...,SM}. The tools of 
information dynamic quantify the information kept 
internally in a target process XS, and the information 
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transferred to X from a ‘source’ process YS, in the 
presence of the remaining M-2 processes collected in the 
vector Z=S\{X,Y}. To explicitly account for the flow of 
time, let us further denote as Xn, Yn and Zn the random 
variables obtained sampling the processes at the present 
time n, and as Xn

─=[Xn-1 Xn-2···], Yn
─=[Yn-1 Yn-2···] and 

Zn
─=[Zn-1 Zn-2···] the vector variables describing the past 

of the processes. Internal information and information 
transfer are then defined as follows. 

 
2.1. Internal information 

The internal information of the scalar process X 
belonging to the multivariate process S is mathematically 
defined as the conditional mutual information between 
the present and the past of X, given the past of all other 
processes in S: 

 ),|;(  nnnnX|Y, YXXIS ZZ . (1) 

This quantity, commonly denoted as conditional self 
entropy (CSE), is the amount of information contained in 
the past of the target process that can be used to predict 
its present above and beyond the information contained in 
the past of all other processes in the network [5]. The 
CSE is useful for the structural analysis of connected 
systems because it is related to the autonomous dynamics 
of an individual system embedded in a network, in the 
sense that a system without internal dynamics does not 
exhibit internal information [5]. 

 
2.2. Information transfer 

The information transferred from the source Y to the 
target X is quantified by the well-known transfer entropy 
(TE), which is defined as the conditional mutual 
information between the present of X and the past of Y, 
given the past of X and of all other processes in S: 

 ),|;(|

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The TE quantifies the amount of information about the 
present of the target process that is explained from the 
past of the source above and beyond the information 
explained by the past of the target itself and of all other 
processes in the network. The definition provided in Eq. 
(2) refers to the ‘multivariate’ or ‘partial’ TE, which 
extends to the case of multiple systems the traditional TE 
originally defined for bivariate systems [6]. This measure 
is helpful to assess the structure of directional interactions 
between processes in the observed network, because it 
has been shown that a system without causal interactions 
does not exhibit information transfer [5]. 
 
2.3. Estimation methods 

The practical computation of CSE and TE from time 

series data proceeds first expressing the definitions (1) 
and (2) by means of conditional entropy terms: 
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where H(A|B)=H(A,B)-H(B) is the conditional entropy of 
the scalar variable A given the vector variable B, and H(·) 
denotes entropy. Then, suitable (conditional) entropy 
estimators have to be employed to compute information 
dynamics from finite length realizations of the observed 
processes. In this study, we considered the two estimation 
approaches described briefly in the following and with 
more detail in Ref. [7]. 

The linear MB estimation of information dynamics 
computes each term in (3) using linear regression, and 
then exploits the relation existing between conditional 
entropy and prediction error variance: 

 2
|2log5.0)|( BB AeAH  , (4) 

where 2
A|B is the variance of the residuals of a linear 

regression of A on B. In this study, the roles of A and B 
are taken respectively by the present of the target Xn and 
by any of the combinations between the past vectors Xn

─, 
Yn

─, Zn
─ appearing in (3). Linear regression was 

performed through standard least squares estimation after 
approximating the past of the processes with p samples, 
where p was set according to the Bayesian Information 
Criterion [8]. 

The nonlinear MF approach is based on non-
parametric entropy estimation, which can be very 
cumbersome because it is hampered by the bias that 
affects progressively the entropy estimates at increasing 
the dimension of the argument variables. To limit this 
bias, we adopted the nearest neighbour entropy estimator: 

 
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where n is twice the distance from the n-th realization of 
B to its k-th neighbor (k=10 in this study) in the d-
dimensional space spanning the Nʹ available realizations 
of B, and is the digamma function. Such an estimator 
was combined with a non-uniform embedding procedure 
aimed at limiting as much as possible the dimension of 
the argument variables. The procedure aims at discarding 
the variables which are not relevant to the description of 
the target dynamics, ending up with an approximation of 
Xn

─, Yn
─, and Zn

─ that includes only the lagged variables 
which contribute significantly to the description of Xn [9]. 
 
3. Protocol and data analysis 

Ten healthy subjects (all males, 18-23 yrs) were 
monitored during the full night with a digital polygraph 
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acquiring EEG (Cz-Ax derivation, Ax mastoid reference, 
100 Hz sampling rate) and ECG (lead II ECG, 200 Hz 
sampling rate). The time series representative of the brain 
activity were measured applying a Fast Fourier transform 
to all consecutive 5-s windows of the EEG, and 
computing the spectral power inside the , , , , and  
frequency bands; for each band, power values were 
averaged over non-overlapping windows of 60 s and then 
normalized to the full night mean power in the band. ECG 
analysis was carried out first upsampling the signal to 400 
Hz, performing beat-to-beat detection of the R peaks, 
measuring the sequence of the consecutive RR intervals, 
and resampling uniformly the series to 8 Hz; then, power 
spectral analysis was performed for consecutive windows 
of 120 s overlapped by half, and the time series 
representative of the cardiac parasympathetic activity was 
obtained normalizing the power in the high frequency 
band (HF, 0.5-0.4 Hz) to the total power in the range 
0.04-0.4 Hz. More details of these procedures are 
reported in [2,7]. 

For each subject, the six time series of the cardiac HF 
component and of the normalized EEG power were 
considered as realizations of the stochastic processes 
descriptive of the heart rhythm (process ) and of the five 
brain rhythms (processes , , , , and ). Then, the 
CSE of each process and the TE between each pair of 
processes were estimated using the approaches described 
in Sect. 2.3. Before the analysis, each time series was 
normalized to zero mean and unit variance. The statistical 
significance of each computed CSE and TE measure was 
assessed exploiting the Fisher F-test for the linear MB 
estimator [2], and exploiting the statistical criterion based 
on randomization implicitly present in the non-uniform 
embedding procedure for the nonlinear MF estimator [9]. 
Moreover, for each CSE or TE detected as statistically 
significant, a test based on linear multivariate surrogate 
data was performed to assess the statistical significance of 
the contribution of nonlinear dynamics to the measure [7]. 

 
4. Results 

Figs. 1 and 2 depict the results of MB and MF analyses 
collected in a network representation, in which arrows 
describe specific estimates of the CSE (gray scale) or the 
TE (brain-heart links: red scale; brain-brain links: blue 
scale); thickness and color intensity of each arrow are 
respectively proportional to the number of subjects for 
which the measure was detected as statistically significant 
(also reported close to the arrow) and to the magnitude of 
the measure. 

Considering the MB analysis (Fig. 1), we found that 
brain-heart interactions occur mostly through a strong 
bidirectional interaction between the  cardiac wave and 
the  EEG wave. As to the other brain waves, we found a 
weaker information transfer, directed almost 
unidirectionally   from  heart  to   brain.   The  brain-brain 

 

Figure 1. Networks of brain-cardiovascular (up) and 
brain-brain (down) interactions assessed through 
information dynamics computed using the MB estimator. 
 
interactions formed a fully connected network, with 
information flowing mostly from the faster  and 
especially  waves to the slower waves ,  and . The 
internal dynamics assessed by the CSE were strong and 
significant for all rhythms. 
The networks assessed through the nonlinear MF 
approach (Fig. 2) were overall similar to those obtained 
with the MB estimator, both in the magnitude and in the 
statistical significance of the estimates of CSE and TE. 
The MF analysis confirmed indeed the bidirectional 
interactions between the  and  nodes, the fully 
connected brain-brain network, and the existence of 
strong internal dynamics for all rhythms. The only 
notable exception regards the delta EEG rhythm, as also 
seen from Table 1 which collects the number of 
statistically significant incoming and outgoing TE links, 
together with the number of significant CSE values, 
assessed across subjects with the two approaches. For 
both estimators, we found more outgoing than incoming 
links for the ,  and  network nodes, and more 
incoming  than  outgoing links for   and  nodes.  On the 
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Figure 2. Networks of brain-cardiovascular (up) and 
brain-brain (down) interactions assessed through 
information dynamics computed using the MF estimator. 
 
other hand, the  node of the network was seen more as a 
sink for the information transfer using the MB estimator, 
and more as a source of information transfer using the 
MF estimator. Looking at the contribution of nonlinear 
dynamics to the information measures, the number of 
links for such a contribution was found to be statistically 
significant was remarkably higher for the CSE computed 
at the  node, and for the TE originating from the  node. 

 
Table 1. Number of significant network links assessed 
through MB and MF analysis of information dynamics. 

 
 CSE TE out TE in 

node MB MF(NL) MB MF(NL) MB MF(NL)

 10 10 (0) 26 24 (4) 12 15 (7) 
 10 10 (1) 11 23 (14) 21 15 (7) 
 10 10 (2) 11 11 (8) 25 26 (11) 
 10 10 (2) 13 10 (6) 27 23 (8) 
 10 10 (1) 21 18 (6) 12 15 (8) 
 10 10 (5) 32 27 (11) 17 19 (11) 

 

5. Conclusions 

The present study showed how the combination of the 
emerging research fields of Network Physiology [1] and 
Information Dynamics [4] allows to explore the complex 
network of physiological interactions that sub-serves the 
joint regulation of cardiovascular and brain systems 
during sleep. Our findings reveal that both internal 
dynamics and causal interactions play a role in sustaining 
such a network, and both linear model-based and 
nonlinear-model free estimators are appropriate for 
structural analysis. While the model-based estimator is 
less demanding in terms of data length and computational 
load, we found that some fine structures – such as those 
underlying the internal dynamics of the rhythm or the 
causal interactions involving the rhythm – could be 
better detected by the model-free approach which is 
sensitive to nonlinear dynamics. 
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