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Abstract

We propose a frequency domain algorithm for heart rate
estimation from photoplethysmographic signals (PPG)
recorded during intense physical activity. Starting from
the Beer-Lambert law we model the effect of movement
artifacts on the PPG signal as an amplitude modulation.
Using tri-axis accelerometer recordings to demodulate the
PPG signal, we are able to extract the heart rate even when
motion artifacts are within the frequency band of inter-
est. The average heart rate error using two-channel PPG
recordings from 12 subjects was 1.6 BPM with a standard
deviation of 3 BPM.

1. Introduction

With the advent of mobile health monitoring devices,
long time monitoring of cardiac signals is increasingly be-
ing used outside the clinical setting, e.g. for athletic perfor-
mance evaluation. One of the most popular technologies to
monitor cardiovascular activity is pulse oximetry, a non-
invasive method based on the change of optical properties
of tissue caused by the pulsatile flow of blood during the
cardiac cycle. Monitoring the heart rate with wrist-worn
pulse oximeters during physical activity features the chal-
lenge of signals that are heavily contaminated by motion
artifacts (MA). These disturbances often lie within the fre-
quency range of the heart rate, such that simple bandpass
filtering for removing motion artifacts is often not enough
or even detrimental. In [1] it is suggested to use the in-
dependent component analysis to separate motion artifacts
from the signal of interest. This approach is well suited for
pulse oximetry on the fingertip, where small non-periodic
movements like finger bending disrupt the signal. When
measuring heart rates with wrist-worn pulse oximeters dur-
ing physical activity such as running, which is often ac-
companied by periodic hand swings, the signal should not
be seen as a linear superposition of the signal of interest
with independent noise signals, as we will show in the
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next section. The major drawback of integrating a pulse
oximeter into a watch is that the contact between the sen-
sors (LED and photodiode) and the skin is not always guar-
anteed. In addition, it is much harder to shield wrist-worn
pulse oximeters from ambient light compared to fingertip
oximeters, due to the loose way of wearing wristbands. In
fingertips and earlobes most of the blood vessels are capil-
laries, compared to the radial artery and veins in the wrist,
which are much more affected by motion induced blood
movements. A reliable heart rate estimation is usually per-
formed by a series of preprocessing steps to remove mo-
tion artifacts followed by an estimation of the power spec-
tral density (PSD) to get the heart rate [2]. The PPG signal
consists of quasi-periodic pulses, which are rather peaked
as shown in Fig. 1 and are thus only poorly modeled with
a pure sinusoid, which though is the underlying assump-
tion in spectral estimation. Other methods to reduce mo-
tion artifacts work by correlating the signal with a bank of
matched filters to exclude abnormal pulse shapes [3]. After
the PPG signal has been “cleaned” to a satisfactory degree,
usually some form of spectral estimation is performed to
extract the average heart rate from the PPG signal. Using
frequency domain methods such as the short-time Fourier
transformation has proven to be a robust technique, be-
cause by using a window of e.g. 8s, multiple heart beats
are captured. Thereby the method is less susceptible to a
few abnormal beats or short parts of the signal which are
affected by heavy motion artifacts.

In this paper we present an algorithm for heart rate es-
timation that works both with PPG signals and tri-axis ac-
celerometer data from an inertial measurement unit (IMU)
attached to the wrist-worn pulse oximeter. Starting from
the Beer-Lambert law, we model the MA-free PPG signal
with an exponential of a sinusoid, whose frequency corre-
sponds to the heart rate (cf. Fig. 1). This model allows us
further to treat the amplitude modulated PPG signal con-
taminated by MA as an additive mixture of sinusoids in the
log-domain.
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Figure 1. Fitting an exponential of a sinusoid (black dot-
ted) and a pure sinusoid (red dashed) to the PPG signal
(blue)

2. Signal Model and Heart Rate Estima-
tion

The Beer-Lambert law [4] describes the attenuation of
light traveling through optical media. It states that the
received intensity decays exponentially with the traveled
path length and the absorption coefficient. Therefore we
approximate the PPG signal corresponding to a heart rate
of wyr, with

gpp(t) = exp(A; sin(wprt + ¢) + Asz), (D

which assumes a uniform heart rate, constant amplitude
A; and a constant offset Ay of the log domain signal on
the considered window. Fig. 1 suggests to model the PPG
signal due to its peakedness rather as an exponential of a
sinusoid than as a pure sinusoid. Motion artifacts on the
raw PPG data can be caused by two fundamentally differ-
ent types of motion. On the one hand physical activity such
as running is usually accompanied by periodic movements
such as hand swings, which influence both the blood flow
and the sensor’s distance to the skin. Such motion artifacts
often lie in the frequency band of interest and have clearly
distinguishable frequency components (cf. Fig 3). On the
other hand boxing movements for instance, are abrupt and
aperiodic and cause heavy distortions in the PPG signal
(cf.Fig. 4), and therefore have to be handled differently. In
the case of periodic motion artifacts we model the signal
on the accelerometer channels by a sinusoid:

a;(t) = a;sin(wit + ¢;) + ki, 2

with ¢ € {z,y, z} and the final signal recorded by the sen-
sor is modeled as:

log(yppa (1)) = log(grpc (1)) +waas (t)+wyay(t)+w.a(t)
3
in the log-domain. The weighting coefficients w,, wy, w,
describe the strength of coupling between the sensor and
the accelerometer in a specific direction. Since an addition
in the log domain corresponds to a multiplication in the
original domain, the peaks in the power spectrum of the
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Figure 2. Taking the exponential of the sum of two si-
nusoids results in an amplitude modulation causing addi-
tional spectral peaks.
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Figure 3. PSD of PPG signal (top), PSD of the tri-axis ac-
celerometer signals. The red cross indicates the real heart
rate.

recorded amplitude modulated signal should lie in the set
Q with

Q= {wHR7wa7wAyawAZ7
lwar — WAz, |[WHR — WAy, [wHR — WAz,
lwar +wasl, lwar + wAy|a lwrR +waz|}

and thus resulting in a smeared spectrum as shown in
Fig. 2. Periodic hand swings are usually characterized by
translational motion along a specific direction. Therefore,
as shown in Fig. 3, the peaks in the power spectra of the
accelerometer can be found on all three axis due to the
projection of the acceleration vector onto each axis. These
spectral peaks also appear in the spectrum of the PPG sig-
nal and can exceed in magnitude the spectral peak corre-
sponding to the heart rate.

2.1. Heart Rate Estimation Algorithm

To get the heart rate from the two-channel PPG signal
we employed a series of preprocessing steps, followed by a
spectral estimation. Firstly, each PPG signal is subdivided
into 8s long segments, guaranteeing a sufficient number of
samples for the desired frequency resolution.

Secondly, a channel evaluation step to ensure both PPG
channels are reliable was employed as follows: If the ratio
of the two PPG signal energies is between 1/10 and 10 (of
the same order of magnitude), then both channels are as-
sumed to be reliable. Otherwise if the energy in the chan-
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Figure 4. PPG signal with aperiodic motion artifacts

nel with the smaller energy content is larger than an em-
pirically determined threshold, this channel was chosen. A
very large energy in the recorded light intensity indicates a
loosely attached pulse oximeter, such that a large fraction
of the light is reflected directly on the skin surface and thus
will not contain any information about the heart rate. A
lower bound on the PPG signal energy was used to ensure
that the sensor picks up a minimum light intensity. This
empirical channel selection is tailored to reflectance-mode
pulse oximetry and would not make sense for transmission
pulse oximetry, where reflection on the skin surface would
reduce the signal’s intensity at the receiver.

Following this, the signal in the considered window is
bandpass filtered with a 4-th order Butterworth bandpass
filter with lower and upper cutoff of 30 BPM and 400
BPM. The upper cutoff is significantly higher than the
highest expected heart rate not to distort the PPG signal,
because the pulse shape of the PPG signal is more peaked
than a sine wave with the same frequency.

One major problem with abrupt movements is the pres-
ence of artifacts with a significantly higher amplitude com-
pared to the rest of the signal. The power spectra contain-
ing such peaks are completely “smeared” out and often
lead to wrong heart rate estimates (c.f. Figure 4). One
way to attenuate such spurious spikes is to pass the band-
pass filtered PPG signal through a sigmoid function like
the atan(.), which is a bounded function. This way, too
high amplitudes will be attenuated and the contamination
of the power spectrum due to movement artifacts will be
reduced. As a final preprocessing step the logarithm of the
non-negative PPG signal is taken to obtain a quasi-periodic
signal which resembles more a sinusoid. Given the prepro-
cessed signal we performed a spectral estimation using Go-
ertzel’s algorithm with zero-padding to obtain a frequency
resolution of 1 BPM. Furthermore we also computed the
power spectra of the accelerometer signals to find the fre-
quency peaks of the motion artifacts. When the sum of
energies in the 3-axis acceleration signals is larger than
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Figure 5. Block diagram of heart rate estimation algorithm
after the PPG signal has been preprocessed.

an empirically determined threshold, indicating strong mo-
tion artifacts, we used the motion artifact correction. This
is done by selecting the peaks Ficceleration Of the PSD of
the acceleration signals. The requirements for a peak to be
chosen were firstly, at least 30% in amplitude compared
to the highest peak and secondly at most 4 peaks were
chosen. The spectral components of the PPG signal with
frequencies corresponding to peaks in the accelerometer
power spectra were multiplied with a rectangular window
of width 5 BPM and a weight inversely proportional to the
accelerometer PSD peaks’ magnitude. Then the peak in
the processed power spectrum of the PPG signal was cho-
sen to be the heart rate. The final heart rate estimate is
further smoothed with a median filter using the previous
3 heart rate estimates. Following a smoothness condition
(HR changes < 20 BPM) the heart rate is either set to
the spectral peak or the previous heart rate. Fig. 5 shows
the core algorithm (with the omission of the preprocessing
steps).

3. Performance Metrics

The test data used to benchmark the developed algo-
rithm was taken from [2]. In this trial two-channel PPG
signals of 12 subjects in the age range of 19 to 58 years
performing various intense physical tasks such as running,
push-up or boxing movements were recorded. Simultane-
ously to the PPG signal a tri-axis accelerometer signal was
recorded. The data also contained ECG signals used as a
gold-standard for evaluating the algorithm’s performance.
All signals were recorded using wrist-type pulse oximeters
with a wavelength of 609 nm using a sampling rate of 125
Hz. One constraint for the algorithm was that for the esti-
mation of the current heart rate only current and past obser-
vations were allowed such that the algorithm can be used
for real time applications. One important performance in-
dex is the averaged absolute estimation error of the heart



Dataset | ugr | oumr | Exercise
1 1.3 2.1 1
2 1.2 3.1 2
3 0.7 1.0 2
4 0.9 1.8 2
5 0.7 1.2 2
6 1.3 2.2 2
7 1.3 1.9 2
8 0.5 0.7 2
9 04 0.7 2
10 3.6 6.7 2
11 0.9 1.3 2
12 6.6 14.2 2

Table 1. Absolute estimation error and standard deviation
of the absolute error for the 12 training subjects.

rate which is defined as:

w
HHR = I/WZ ’HRPGf(Z) - HRtrue(i) P (4)

i=1
where W is the total number of heart rate estimates, where
HR.: (i) is the i-th PPG heart rate estimate, and where
HRyyye (1) is the i-th ground-truth heart rate from the ECG.
A second index we considered is o g i, the standard devia-
tion of the absolute estimation error of the heart rate. To vi-
sually inspect the performance of the developed algorithm
we used the Bland-Altman plots, to see in which heart rate
region the performance of the algorithm was strong and in
which parts of the signal the performance was poor.

4. Results

Table 1 shows the average absolute estimation error, the
standard deviation of the absolute estimation error and the
exercise protocol as described in [2] for each of the 12
training subjects. The average heart rate estimation error
for the first 12 subjects running on the treadmill is 1.6 BPM
(2.3 BPM was achieved in [2]). An additional recording
provided by Z. Zhang from [2] had an average estimation
error of 9.6 BPM and a standard deviation of the absolute
estimation error of 17 BPM. This could be due to the dif-
ferent types of exercises, which were performed, that un-
like running did not result in periodic movement artifacts.
In Fig. 6 we can visually inspect how well the heart rate
estimation using the PPG signal matches the heart rate ex-
tracted from the ECG signal for all 12 training subjects.

5. Discussion and Conclusion

We presented an algorithm for estimation of heart rates
from photoplethysmographic signals recorded during in-
tense physical exercise. The algorithm is based on spectral
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Figure 6. Bland-Altman plot of estimated heart rate from

ECG and PPG for all 12 training subjects.

estimation, preceded by a cascade of nonlinear preprocess-
ing steps, which include knowledge obtained from the ac-
celerometers. The choice of the window size on which to
estimate the heart rate is an important question. A larger
window will contain more heart beats and therefore tends
to be more robust, due to its ability to discard small con-
taminated parts of the signal. Due to heart rate variability
on the other hand choosing a too large window will result
in a very crude estimate of the heart rate. The main weak-
ness of frequency based approaches is the assumption of
a uniform heart rate, which is surely violated, especially
when performing intense physical exercise. The algorithm
has a very low average error rate when motion artifacts are
periodic such as they occur when running. When dealing
with motion artifacts such as abrupt movements in boxing,
the algorithm had an inferior performance.
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