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Abstract

Big data analytics is broadly used today in multiple re-
search fields to discover and analyze hidden patterns and
other useful information in large databases. Although Car-
diac Arrhythmia Classification (CAC) has been studied in
depth to date, new CAC methods need to be still designed.
In this work, we propose a new big data analytics method
for automatic CAC of intracardiac Electrograms (EGMs)
stored in Implantable Cardioverter Defibrillators (ICDs).
The proposed method combines the effectiveness of a mea-
sure based on data compression concepts (Jaccard dic-
tionary similarity), which exploits the information among
EGMs, and the classification power of kernel methods. It
also requires minimal EGM preprocessing and allows us to
deal with EGMs of different duration. A database of 6848
EGMs extracted from a national scientific big data service
for ICDs, named SCOOP platform, were used in our exper-
iments. Performance for two classifiers (k-Nearest Neigh-
bors or k-NN, and Support Vector Machines or SVM) were
compared in two CAC scenarios using four different input
spaces. Results showed that k-NN worked better than SVM
when previous episodes from the same patient were avail-
able in the classifier design, and vice-versa. For the best
cases, k-NN and SVM yielded accuracies near to 95% and
85%, respectively. These results suggest that the proposed
method can be used as a high-quality big data service for
CAC, providing a support to cardiologists for improving
the knowledge on patient diagnosis.

1. Introduction

Patients at high risk of suffering a severe arrhythmia are
increasingly treated with an Implantable Cardioverter De-
fibrillator (ICD) [1]. An ICD is a device with limited mem-
ory and computational resources, able to record intracar-
diac electrical signals given by Electrograms (EGMs) and

detect arrhythmic episodes for performing cardioversion,
defibrillation or pacing [1]. Regardless of the extensive de-
velopment to date in ICD arrhythmia detection algorithms,
Cardiac Arrhythmia Classification (CAC) remains an ac-
tive research in the ICD field [2], specially in the improve-
ment of the most appropriate shock therapy according to
the arrhythmia type. In this setting, criteria such as cardiac
cycle length, RR intervals, width of QRS complex or mor-
phological methods have been broadly used to define new
CAC methodologies. However, these approaches present
limitations and often require an intensive EGM preprocess-
ing, not always validated in large databases [2].

Currently, a great part of the cardiac arrhythmia research
is oriented towards big data analytics, and scientific big
data repository systems as SCOOP platform (developed by
Medtronic Ibérica R© S.A. in 2011) are allowing the devel-
opment of new CAC algorithms. In this new context, we
propose a new big data analytics method for CAC. This
method is based on an effective combination of informa-
tion theory concepts (similarity based on data compres-
sion) and kernel methods. It is computationally very fast,
requires minimal EGM preprocessing and allows us to deal
with episodes of different duration.

The remaining of the paper is organized as follows. Sec-
tion 2 presents the basis of similarity based on data com-
pression and classification using kernel methods. SCOOP
platform and the set of arrhythmia episode EGMs used in
this work are shown in Section 3. Results and discussion
are presented in Sections 4 and 5, respectively.

2. Data compression and kernel-based
classifiers

A measure based on data compression approximates the
Kolmogorov Complexity (KC) to exploit the amount of in-
formation shared by two elements [3]. The KC is de-
fined for a bit string x, and it corresponds with the ulti-
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mate compressed version of x from which x can be ex-
actly recovered by a decompression program. Measures
as Information Distance and Normalized Information Dis-
tance [3] were defined to express a similarity between
two bit strings x and y using the KC. Unfortunately, the
KC can not be computed in practice [3], therefore data
compressors (as LZW, zip, Gzip, LZMA, or PPMZ) are
used to approximate it to a quantitative magnitude. Thus,
new Compression-based Similarity Measures (CSMs) to
be used in real computers have been defined from measures
based on KC. The most common CSM in the literature is
the Normalized Compression Distance (NCD) [3].

The well-known concept of Dictionary Matching (DM)
is increasingly used to approximate KC and define new
CSMs computationaly faster than NCD. The two most
common CSMs based on DM are the Normalized Dictio-
nary Distance (NDD) and the Fast Compression Distance
(FCD) [4]. Applying concepts similar to those used in
NDD and FCD, the notion of Jaccard similarity of sets [5]
can be extended to the dictionary space. Thus, we define
the Jaccard Dictionary Similarity (JDS) between two bit
strings x and y:

JDSxy =
|Wx ∩Wy|
|Wx ∪Wy|

(1)

where | · |, ∪ and ∩ denote the set cardinality, set union and
set intersection operators, and Wp is the set of words from
the dictionary obtained in the compression of bit string p.

In this work, the proposed CAC approach corresponds
to a kernel method where: (1) JDS is applied to arrhyth-
mia episodes to construct a kernel matrix among episodes
(we have defined this kernel as Jaccard Dictionary Kernel
or JDK); and (2) each row/column of JDK is used by a
machine learning classifier as input vector. An important
point when a similarity matrix is considered as a kernel
is that it fulfills the Mercers’s condition, i.e., the matrix
is positive semi-definite [6]. We experimentally checked
that JDK is a Mercer’s kernel because the constructed JDS
matrices always yielded positive eigenvalues.

By means of JDK, two different machine learning
schemes were used here to classify the arrhythmia episodes
EGMs: k-Nearest Neighbors (k-NN) and Support Vector
Machines (SVMs). First, k-NN classifies each instance (in
this work instance refers to episode EGM) according to
the most frequent class among those belonging to the most
similar k instances [7]. Parameter k must be adequately
chosen so that the classifier can offer good generalization
properties. We have considered JDK as similarity mea-
sure. Second, the SVM classifier creates a decision hy-
perplane maximizing the margin, defined as the distance
between the boundary and its closest instances, to subse-
quently classify each instance into a class [6]. A selec-
tion of the regularization parameter C (which controls the
trade-off between error and margin size) was required.

Table 1. Classes of cardiac arrhythmia episodes deter-
mined by the expert cardiologist committee and their rela-
tive occurrences in our SCOOP database.

Label # Episodes Ocurrence
8-class 3-class 8-class 3-class 8-class 3-class

ST

Atrial

956

2341

13.96%

34.19%AF 803 11.73%
SVT 307 4.48%
UST 275 4.02%

SMVT Ventricular 4113 4387 60.06% 64.06%VF 274 4.00%
TWO Other 82 120 1.20% 1.75%NS 38 0.55%

3. Arrhythmia database

The EGM database used in this work has been provided
by Medtronic Ibérica R© S.A. In 2011, this company de-
veloped a Spanish-level scientific big data platform named
SCOOP. This platform supports cooperatively the knowl-
edge generation in the ICD field by taking advantage of
the automatic information transmission from the ICD to
a remote server. To date, SCOOP has stored more than
20,000 two-channel-EGMs of arrhythmia episodes from
more than 2,500 patients from 50 Spanish hospitals, with
an average follow-up around 2.5 years. Each patient’s
ICD remote follow-up is within an observational frame-
work research study, so-called UMBRELLA, which en-
sures the legal, normative, and scientific data exploitation,
as well as privacy requirements [8]. Besides the large
amount of ICD information stored in SCOOP, a system-
atic clinical evaluation and classification process is also
carried out on each arrhythmia episode by a scientific
committee consisting of 6 expert cardiologist, ensuring
high quality of data. This committee defined 8 arrhyth-
mia episode classes, namely: Sinus Tachycardia (ST),
Atrial Fibrillation (AF), Supraventricular Tachycardia or
Flutter (SVT), Uncertain Supraventricular Tachycardia
(UST), Sustained Monomorphic Ventricular Tachycardia
(SMVT), Sustained Polymorphic or Ventricular Fibrilla-
tion (VF), T-wave Oversensing (TWO), and Noise (NS).

For this work, a set of 6848 EGMs from 629 patients
recorded from January 2012 to December 2013 were ex-
tracted from SCOOP. Table 1 shows the relative occurrence
for each arrhythmia class in our database, as well as the
grouping of these classes according to the arrhythmia ori-
gin into three major sets (3-class), namely, atrial, ventric-
ular and other. Arrhythmia episodes had a mean length of
24.42 ± 16.64 s, median 19.82 s, and interquartile range
13.23 s. The mean number of episodes per patient was
10.8 ± 22.9, median 4, and interquartile range 10. The
diversity of ICD models monitored in SCOOP resulted in
up to 10 possible lead configurations for far-field and near-
field channels. The most usual configurations were Can
to HVB - Vtip to Vring (3334 episodes) and Atip To Ar-
ing - Vtip to Vring (2899) (more detail of lead configu-
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rations in [9]). All episodes were sampled at 128 sam-
ples/second in the ±8 mV range, with an amplitude reso-
lution of 0.063 mV.

Each episode consisted of two-channel-EGMs, denoted
as ch1 and ch2, with the same number of values simulta-
neously recorded from different lead configurations. We
considered four input spaces for the CAC design. Two
spaces consider values from both channels as they are, and
the other two perform a transformation of each episode
into a complex signal c = ch1 + j · ch2 (where j is the
imaginary unit) to work with magnitude and phase values
(inspired on phase portraits [10]). Thus, we considered:
(1) Concatenated Channels (CCcat); (2) Alternate values
of each channel (ACcat); (3) Concatenated (CXcat) and
(4) Alternate (AXcat) magnitude and phase values.

Two resampling strategies based on the Leave One Out
- Cross Validation (LOOCV) [7] technique were used to
evaluate the CAC generalization performance. First, the
strategy named LOEOCV considers that each instance is
associated to an episode. The strategy named LOPOCV
considers the equivalence instance-patient such that each
instance encompasses all episodes from the same patient.

4. Results

Two merit figures (accuracy rate, Cohen’s kappa coeffi-
cient κ [11]) and the baseline accuracy (which express the
occurrence of the majority class) were considered for per-
formance evaluation. Table 2 summarizes the results for
SVM and k-NN. We experimentally checked that parame-
ter C does not affect the SVM performance in our dataset,
so it was fixed at a value of 100. The k value providing the
highest κ according to each validation strategy (LOEOCV
and LOPOCV) was selected for k-NN. Thus, k = 1 was
selected in all cases for LOEOCV, and around k = 3 and
k = 5 for 3-class and 8-class, respectively, in LOPOCV.
The best performance (in bold) was always for CCcat in-
put space, except for LOEOCV-8-class scenario where the
accuracy was slightly better for AXcat, although κ was the
same. The worst performance was for the LOPOCV-8-
class case, which was more pronounced for k-NN classi-
fier with accuracies lower than (but close to) baseline accu-
racy (given by 60.06%). Related with this performance is
the dramatically different accuracy between LOEOCV and
LOPOCV, which was higher with k-NN classifier. This
performance reduction in LOPOCV was not so dramatic
for the 3-class with SVM, which outperformed the base-
line accuracy (64.06%) in 21%.

Kappa coefficient allows to interpret the reliability of
the CAC schemes and to know quantitatively how random
(κ=0) is the classification. We conclude that the accuracy
when using LOEOCV is not random because κ >0.6 in all
scenarios, yielding high values with k-NN. From a clini-
cal point of view, this result is in accordance with a patient

Table 2. Accuracy rate (first value, in %) and κ coefficient
(second value) in 32 different CAC scenarios.

8-class 3-class
LOEOCV LOPOCV LOEOCV LOPOCV

89.78 60.31 95.43 77.56CCcat 0.83 0.27 0.90 0.49
89.72 58.78 95.33 73.10CXcat 0.81 0.23 0.90 0.37
88.39 49.72 94.17 68.84ACcat 0.83 0.16 0.88 0.29
89.97 49.04 95.24 65.76

k
-N

N

AXcat 0.83 0.17 0.90 0.28
84.01 69.41 92.41 85.81CCcat 0.72 0.47 0.84 0.70
83.17 65.51 91.40 80.91CXcat 0.71 0.39 0.82 0.60
82.49 62.94 90.73 80.53ACcat 0.69 0.35 0.80 0.59
84.06 61.14 91.95 78.72

SV
M

AXcat 0.73 0.33 0.83 0.55

having similar individual physiopathological mechanisms
characterizing his/her EGM episodes (specially when the
patient suffers from an arrhythmic storm). Thus, 1-NN
is the best classifier when episodes from the same patient
were considered in the classifier design. On the opposite
side are κ values obtained when considering the LOPOCV
strategy. With k-NN classifier, κ is very low and accura-
cies close to the baseline (60.05%) were reached, suggest-
ing k-NN is not the best scheme for this purpose. Note
that accuracy and kappa increase significantly when SVM
is used, reaching κ=0.47 and κ=0.7 in the best cases for 8
and 3-class scenarios, respectively.

The SVM implementation used in this work was the
multi-class one [12], which also provides with an esti-
mation of the corresponding posterior probability (PP).
Figure 1 shows the PP histograms for correctly and
wrongly classified arrhythmia episodes in the 3-class-
CCcat-LOPOCV scenario (best case when episodes from
the same patient are not available in the classifier design).
Note that PP is high (in most cases near 100%) with pro-
nounced skewness towards high values. However, PP his-
tograms for the wrongly classified episodes follow almost
uniform distributions, evidencing a lack of security in the
SVM classification. Previous work in [13] highlighted
the need to improve accuracy when classifying episodes
of a patient not considered in the classifier design (i.e,
LOPOCV scenario), which has been improved here about
7 percentage points.

5. Discussion

In this work, we have presented a new big data analytics
method for automatic CAC of EGMs stored by ICDs. This
new approach effectively combines concepts based on data
compression with the power of kernel methods, allowing to
classify EGMs with different duration while avoiding large
preprocessing stages.
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Figure 1. PP histograms provided by JDK-SVM for the 3-
class-CCcat-LOPOCV scenario. Correctly-wrongly clas-
sified cardiac arrhythmia episodes taking into account all
(a)-(b), atrial (c)-(d), ventricular (e)-(f), and other (g)-(h)
classes.

The classification potential of this new method facili-
tates its use in multiple cardiac applications, whose main
reference would be as a support tool in SCOOP platform.
The actual scientific committee could receive support from
the method in their labeling task, providing even a priority
search of relevant episodes pending of cardiologist evalua-
tion.

The use of elaborated machine learning techniques such
as SVM has shown to improve the CAC performance in
LOPOCV scenarios. Future work is oriented towards the
use of new arrhythmia information provided by the ICD,
and to new cardiac signal scenarios with different condi-
tions on sampling rate and amplitude resolution.
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