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Abstract

Capacitively coupled electrocardiography (cECG) is a
means of measuring the electrocardiogram (ECG) unob-
trusively. Thus, it has a substantial advantage over the
standard ECG using galvanic electrodes, which have to
be placed directly on the skin of the patient potentially
causing skin irritations and inconvenience. Nevertheless,
cECG has multiple drawbacks concerning signal quality
and is therefore not used in a clinical environment yet. One
of the problems regarding cECG is the different morphol-
ogy of the signal. As a consequence, clinical diagnoses
from the cECG are challenging. In this paper, an approach
is pursued to estimate the actual ECG from a given cECG.
A method based on a multiple-input-single-output decon-
volution technique is presented. The aim is to reconstruct a
single-lead reference ECG from multiple cECG channels.
In order to test this approach, data from previous studies
were analyzed. It was found that reconstruction via de-
convolution of the reference ECG from three given cECG
channels was indeed possible.

1. Introduction

Capacitively coupled ECG has been investigated by
many groups in the past years [1]. Its benefit is a contact-
less measurement and therefore, among others, improved
comfort for patients compared to the standard ECG. How-
ever, due to its capacitive coupling, the cECG signal differs
from the conductive ECG in terms of morphology. Addi-
tionally, the cECGs amplitude is attenuated and it is more
artifact-prone [2]. Hence, one difficulty of cECG, if no
ground truth is available, is to deduce the reference ECG.
The possibility to determine transfer functions based on
mathematical modeling of the electrode-skin contact and
the knowledge of the capacitive ECG system has been
shown in the past [3]. However, given such a model, it
is difficult to correctly estimate its parameters.

The deconvolution algorithm is based on [4] and its ap-
plication to vital signs was shown in [5]. The latter de-

scribes a single input multiple output (SIMO) deconvolu-
tion method applicable for cardiac signals. The SIMO de-
convolution process is performed in the frequency domain,
where convolution becomes a simple multiplication.
The initial assumption that this deconvolution concept can
be used for cardiac signals, is based on the knowledge that
heart activity is the source of multiple bio-signals. These
bio-signals may be recorded electrically, optically or me-
chanically. The resulting signals look very different but ul-
timately have the same cardiac source and are therefore de-
livering the same information. On this basis, Hoog Antink
et al. assume cardiac activity as a train of impulses [5].
These impulses are delayed and filtered to result in differ-
ent bio-signals: ECG, photoplethysmogram (PPG), ballis-
tocardiogram (BCG), etc. Each modality can be calculated
from the impulses by a determined delay, a ”transfer” fil-
ter and Gaussian noise. It was shown that an estimation of
these filters from the given multi-modal synthetic as well
as recorded data is possible [5].
This paper is structured as follows: in the methods section,
the database and data selection, as well as the deconvolu-
tion algorithm are described. The next section presents the
results. Finally, the last section consists of discussions and
conclusions.

2. Methods

In this paper, an approach based on a multiple-input-
single-output (MISO) deconvolution technique is pre-
sented. The aim is to reconstruct a single-lead reference
ECG from multiple cECG channels.
The algorithm was tested on data from previous studies.

2.1. Database and Data Selection

cECG data were selected from the MedIT UnoVis
database [6]. The chosen recordings consisted of three
cECG and one reference ECG channel from several test
subjects that were acquired with a driver’s seat equipped
with six cECG electrodes during test drives. The exper-
imental setup is described in detail in [6]. In total, the
dataset UnoVis auto2012 contains 13.4 h of data.
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Figure 1. Signal processing realization

Since large parts of the data were contaminated with noise,
preselection was conducted. For this purpose, a multi-
channel algorithm was used [7] [8]. Beat-to-beat intervals
from multiple channels were be estimated. If it was not
possible to estimate intervals, it was concluded that an ar-
tifact was present across all channels. These were therefore
discarded. Additionally, in order to obtain larger coherent
parts of the signal, at least 18 consecutive beats had to be
detected to qualify for the data set.
Subsequently, test set and training set were selected for
10-fold cross validation. Random coherent parts of the
database were selected for ten distinct groups. Each of
the groups was test set for one round, the rest was used as
training data, see Figure 1.

2.2. Deconvolution Algorithm

The underlying model for the deconvolution is presented
in Figure 2. The reference signal is estimated from three
cECG signals that are delayed and filtered. In order to
obtain the estimation, the filters ~Ai of order q and with
i = {1, 2, ...,m} channels are calculated. The delays
e−jωT are estimated using cross-correlation.

If y(t) is the reference ECG, xi(t) are the capaci-
tive ECG channels where n(t) represents noise and t ∈
{0, ..., T}. The filter coefficients are denoted ai(τ). Then

y(t) =
m∑
i=1

q∑
τ=0

xi(t− τ)ai(τ) + n(t). (1)

Now the Fourier transform Y (ω) can be calculated:
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Figure 2. Estimation of the reference ECG signal from 3
cECG signals

Y (ω) =
m∑
i=1

~E(ω)Xi(ω) · ~Ai +N(ω), (2)

with the filter vectors ~Ai for each cECG channel:

~Ai = (a1(1), ..., a1(q))
T
. (3)

~E(ω) signifies the delay vector:

~E(ω) =
(
1, e−j2πω/T , ..., e−j2πωq/T

)
. (4)

Using ~E(ω) the matrix EX is constructed,

EX =


~E(0) ·X1(0) ~E(0) ·X2(0) ... ~E(0) ·Xm(0)
~E(1) ·X1(1) ~E(2) ·X2(1) ... ~E(1) ·Xm(1)

... ... ... ...
~E(T ) ·X1(T ) ~E(T ) ·X2(T ) ... ~E(T ) ·Xm(T )


(5)

and the multi-channel filter vector

~A =


~A1

~A2

...
~Am

 . (6)

The goal is now to find the minimal solution for

argmin
~A

‖EX ~A− ~Y ‖22. (7)

After separating real- and imaginary part, the least-
squares optimal solution is

~A = (EXTEX)−1EXT · ~Y . (8)
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The estimated Fourier transform of the reference ECG is

~Y ∗ = EX · ~A. (9)

The time-domain estimated signal y∗(t) is calculated by
inverse transformation of ~Y ∗.

3. Results

We applied deconvolution to our test data and obtained
an estimated ECG signal. By using cross-correlation it be-
came clear that the delays between cECG and ECG were
found to be negligible. In terms of delay, the cECG and
ECG are congruent, which is reasonable since both signals
share the same electrical source. There might be a slight
difference, but it cannot be accurately recorded with a sam-
ple rate of 100 Hz.
In Figure 3 an excerpt of the test data is shown with the
filter length q = 75 and a sample rate of f = 100 Hz. The
three cECG channels and the estimation are plotted with
the reference ECG. It can be seen that the R-peaks of the
cECG channels are lower than the reference. In channel 1,
the R-peak is half the size of the reference. In contrast, the
estimation’s R-peak is higher. Additionally, the S-waves
are too negative compared to the gold standard. However,
this is not corrected in the estimated ECG. Furthermore,
artifacts occur in this excerpt in the cECG channels. In
channels 1 and 3, an artifact occurs during the second Q-
wave, which is not visible in the estimated ECG.

In order to evaluate the results, the estimation was per-
formed with 10-fold cross-validation. The root-mean-
square error deviation (RMSE) and the correlation are de-
picted in Table 1. The error was the highest in channel 1
followed by channel 2 of the capacitive ECG. Channel 3
was the best capacitive ECG, but it performed worse than
the estimated ECG in every test run that was conducted.

4. Discussion and Conclusion

The RMSE and the correlation of the reference ECG sig-
nal to its estimation obtained via deconvolution were an
improvement over each of the unprocessed cECG chan-
nels. While this is a promising result, its applicability to
other cECG setups has to be shown in future studies. Over-
all, it was shown that the estimation of the reference ECG
from multiple cECG channels is possible with deconvolu-
tion.
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Figure 3. Capacitive ECG channels compared with the estimated ECG and reference ECG

Table 1. RMSE and correlation of the reference ECG with the capacitive ECG channels 1,2,3 and the estimation from
deconvolution

RMSE Correlation
Data cECG 1 cECG 2 cECG 3 Estimation cECG 1 cECG 2 cECG 3 Estimation
Run 1 1.2880 1.0193 0.7337 0.6119 0.1409 0.4611 0.7216 0.7742
Run 2 1.1171 0.9600 0.7302 0.5667 0.3554 0.5243 0.7250 0.8107
Run 3 1.2517 1.0606 1.0726 0.6954 0.1910 0.4192 0.4063 0.6982
Run 4 1.1862 0.9241 0.7610 0.5677 0.2747 0.5599 0.7018 0.8119
Run 5 1.2611 1.0333 0.7506 0.5959 0.1776 0.4477 0.7090 0.7874
Run 6 1.0874 1.0441 0.8722 0.6898 0.3940 0.4412 0.6104 0.7110
Run 7 1.3136 1.0734 0.8288 0.6491 0.1065 0.4032 0.6444 0.7401
Run 8 1.2438 1.0931 0.7055 0.6499 0.2004 0.3824 0.7431 0.7420
Run 9 1.2122 0.9226 0.8601 0.5683 0.2415 0.5606 0.6182 0.8097
Run 10 1.2499 1.0313 0.8280 0.6221 0.1967 0.4530 0.6476 0.7686
Total 1.2211 1.0162 0.8143 0.6217 0.2279 0.4653 0.6527 0.7654
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