A Fully Automated Approach to Aortic Distensibility
Quantification from Fetal Ultrasound Images

G Tarroni!, S Visentin?, E Cosmi?, E Grisan®

! University of Padova, Padova, Italy
2 University Hospital of Padova, Padova, Italy

Abstract

Intrauterine growth restriction (IUGR) is a fetal con-
dition that can be assessed by estimating aortic intima-
media thickness (aIMT) and pulse pressure (PP) from ul-
trasound (US) image sequences. Correct measurement of
these quantities requires the identification of the aortic lu-
men contours at end-systolic (ES) and end-diastolic (ED)
phases and the estimation of the undergoing change in di-
ameter (aortic distensibility, AD). This analysis currently
relies on tedious and error-prone manual tracing. Accord-
ingly, we developed a fully-automated technique for lumen
identification and segmentation, allowing direct aortic dis-
tensibility estimation, and tested it against manual analy-
sis. The technique is based on convolution with a set of
discriminative kernels learned from a training dataset, fol-
lowed by segmentation based on anisotropic filtering and
level-set methods. We tested this approach against man-
ual analysis on 10 image sequences acquired from differ-
ent subjects, and compared automatically and manually
extracted lumen diameter values as well as AD values.
Results suggest that the proposed technique is as accurate
as manual analysis, and could thus serve as a basis for
fully-automated aIMT and PP estimation.

1. Introduction

Intrauterine growth restriction is a condition determined
by insufficient oxygen and nutrient delivery to the fetus
affecting up to 10% of all pregnancies [1]. Epidemiologi-
cal studies have long demonstrated the presence of a link
between IUGR and increased rates of cardiovascular dis-
eases during adulthood [2]. While the mechanisms under-
neath this link are still under debate, several recent studies
indicate the presence of a direct connection based on the
occurrence of primary cardiovascular changes in [TUGR fe-
tuses [3]. These early changes persist during childhood
and adulthood, and might explain the increased predispo-
sition to cardiovascular disease later in life. In particu-
lar, IUGR has been linked to an increase in aortic intima-
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media thickness (aIMT) [3] and in estimated pulse pressure
(PP) [4]. Both these quantities can be measured at the fe-
tal stage by means of ultrasound (US) images, improving
IUGR evaluation and early cardiovascular risk assessment.
For their correct measurement, it is necessary to identify
the lumen contours at end-systolic (ES) and end-diastolic
(ED) phases. Moreover, the estimation of the aortic disten-
sibility (here defined as the difference A D in aortic lumen
diameter between ES and ED) is directly required for PP
estimation.

As of now, the identification of the aortic lumen bound-
aries throughout the cardiac cycle in US image sequences
relies on tedious, error-prone and operator-dependent man-
val tracing. While several automated techniques have
been recently presented [5][6], most of these methods re-
quire the manual identification of the images displaying
a highly-contrasted aorta and the manual selection of a
region-of-interest (ROI) around the aortic lumen. Our
goal was to develop a fully-automated technique for lu-
men identification and segmentation from US images al-
lowing direct aortic distensibility estimation, which could
thus serve as a basis for aIMT and PP estimation.

2. Methods

2.1. Image Analysis

The main steps of the proposed technique are the three
following ones:

A) Lumen identification. Lumen identification is per-
formed by convolving each image with a set of discrimina-
tive kernels specifically designed to detect the aortic vessel
in US images. This set of kernels is learned from a train-
ing dataset consisting of positive and negative image sam-
ples (i.e. containing and not containing the aortic lumen,
respectively, see Fig. 1). The adopted kernels are linear
weak classifiers combined together using an AdaBoost al-
gorithm and the Parzen’s windows method [7].

Let’s consider a binary classification problem for which
we have a set of N training data {x1,...,xx} € X with
associated labels {y1,...,yn} € {—1,1}. In the case of
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Figure 1. Sets of positive and negative samples used to
learn the set of optimal discriminative kernels for aortic
lumen detection.

image classification, ; € X C RY is an image of W
pixels. Let’s denote with H : RW— {—1,1} a general
classifier function. The optimal classifier is the one that
minimizes the empirical error

Z/Qz

where gy is a Gaussian kernel with zero mean and co-
variance Y. (Parzen’s windows method). The classifier H
can be constructed as the combination of several linear
weak classifiers h,, within a boosting framework:

Err(H )yi (H(z))dz (1)

M
Hy =) amgs * hun () )
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Each linear weak classifier writes as
hm = SZQ"(VO,m + Yi,m iE) (3)

with ¥, € R and 71, € R". Having defined the
weights introduced by the boosting procedure as w(x;, y;),

N
with >

=1
each classifier h,,, writes as

w(x;,y;) = 1, the empirical error associated to

N
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with erf being the error function. The optimal g,
Y1.m and a,, for each weak classifier yielding the mini-
mum empirical error can be estimated following the itera-
tive learning scheme described in Algorithm 1.

730

Algorithm 1 Learning scheme

1: Initialize Hy(x) = 0 for all z; € X.

2: Initialize w(x;,y;) = 1/N foralli =1,2,..., N.

3: form=1to M do

4: Estimate the coefficients of 7o, and v, of the
linear weak classifier minimizing the empirical error
Erry(hpy) using a gradient descent optimization.

5. Let

1 — Erry(hm)

@ <—llo - w
m J Erry(hm)

2
6: Update the weights
w(g, y;) < w(a,,y;)e Viomhm@),

Update the auxiliary function H,,, =
end for

m—1 +amHm

Once the M weak learners have been estimated from the
training set (see Fig. 1), each pixel of a given image I can
be graded according to its likeliness to be within the lumen
using the following equation:

M
= Zamsign(%-;l-i-ﬁ*f) o)
m=1

More in particular, in order to take into account potential
differences in lumen size, [ is resized with different scal-
ing factors and convolved with the kernel associated with
the highest «,,,: the optimal scaling is the one yielding the
highest convolution peak. Then, the scaled I is adopted
within Eq. 5. The computed H; highlights the aortic lu-
men, if visible, and potentially other spurious regions (see
Fig. 2). The best candidate for the aortic lumen is se-
lected through a process based on area and eccentricity of
the associated best-fitting ellipse of each region. Finally,
if the area of the best candidate is higher than a threshold,
the corresponding region is considered part of the aortic
lumen, otherwise a no visible lumen” flag is raised.

B) Lumen segmentation. Lumen segmentation is per-
formed within a ROI centered around the detected lumen
region. The first step consists of anisotropic filtering [8],
which aims at reducing the noise in the image while pre-
serving the edges. Then, an edge-based level-set method
(following the Malladi-Sethian formalism [9]) is applied,
allowing the identification of the final lumen contours.

C) Distensibility estimation. Once the lumen contours
have been identified for a number of consecutive frames
covering sufficient cardiac cycles, a time curve for the lu-
men diameter (defined as the average distance between the
lumen contours in each frame) is computed. A sinusoidal
function is fitted on the time curve through simulated an-
nealing: the distensibility AD is defined as the double of
the amplitude of the best fitting sinusoid.



Figure 2. Lumen identification. Among the regions high-
lighted from the convolution of the image I with the set
of discriminative kernels (white and yellow contours), the
aortic lumen (yellow contour) is selected through consid-
erations regarding area and eccentricity of the associated
best-fitting ellipse of each region.

2.2. Image Acquisition

Image sequences were acquired on 20 subjects undergo-
ing routine US examinations during pregnancy. The local
ethical committee approved the study and all patients gave
written informed consent. Fetal US data was acquired at a
mean gestational age of 31 weeks (range 20 to 36 weeks)
using a US machine equipped with a 5 MHz linear array
transducer (Voluson E8, GE), with a 70° FOV, image di-
mension 720x960 px and a variable resolution between
0.05 and 0.1 mm. The localization of the abdominal aorta
was performed in a sagittal view of the fetus at the dorsal
arterial wall of the most distal 15 mm of the abdominal
aorta, sampled below the renal arteries and above the il-
iac arteries. Gain settings were tuned to optimize image
quality. After localization, the vessel was visualized in a
maximal longitudinal section with an angle of insonation
as close to 0° as possible. Mean frame rate was 48 Hz and
acquisition times ranged between 5 and 10 s.

2.3. Performance Testing

The acquired sequences were divided into two groups: a
training dataset (10 sequences, used to build the set of dis-
criminative kernels) and a testing dataset (10 sequences,
used to assess the accuracy of the proposed technique).
An experienced interpreter visually examined the train-
ing dataset and manually traced ROIs containing a well-
defined aortic lumen on 4 different frames per each se-
quence. A number of 20 positive samples was extracted
from each frame by cropping the image within the traced
ROI at uniformly spaced positions. The same number of
negative samples was extracted by cropping the image out-
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Figure 3. Visual comparisons between lumen contours
identified using the proposed automated technique (yellow
dashed lines) and manual tracing (red solid lines) on dif-
ferent sequences.

side the ROI in random positions. This procedure resulted
in a set of 1600 samples. To reduce the number of un-
known coefficients and allow the learning algorithm to
converge, each sample was resized to a 15-by-15 px im-
age. The resized samples are finally adopted to compute
the set of discriminative kernels.

For each sequence in the testing dataset, an experience
interpreter selected a range of consecutive frames (based
on lumen visibility) covering at least 2 cardiac cycles. The
proposed technique was applied to the selected frames, al-
lowing the estimation of both frame-by-frame lumen di-
ameter as well as sequence-by-sequence AD. The expe-
rienced interpreter manually performed the same analysis
by tracing lumen contours on visually identified ES and
ED frames (for a total of 54 frames). The accuracy of the
proposed technique was evaluated using Person’s correla-
tion coefficient, linear regression and Bland-Altman anal-
yses, comparing automatically and manually extracted lu-
men diameter values (computed on ES and ED frames) as
well as AD values.
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Figure 4. Visual comparison between an automatically
extracted lumen diameter time curve (blue line) and man-
ually obtained values (red dots) on a single sequence.

Table 1. Results of the quantitative analyses.

Lumen Diameter AD

R 0.94 0.74

Lin. Regr. - Slope 0.90 1.04
Lin. Regr. - Intercept 0.21 mm 0.08 mm
Bland-Altman - Bias -0.21 mm 0.11 mm
Bland-Altman - Std 0.38 mm 0.13 mm
Mean Measured Value 4.54 mm 0.78 mm

3. Results

Fig. 3 shows examples of visual comparisons be-
tween automatically and manually identified lumen con-
tours. Fig. 4 shows an example of the comparison between
an automatically estimated lumen diameter time curve and
manually obtained values. The results of the quantitative
analyses for both lumen diameter and AD values are re-
ported in Table 1.

4. Discussion and Conclusions

The estimation of intima-media thickness and pulse
pressure in the abdominal aorta from US image sequences
can improve IUGR assessment at an early stage. Unfortu-
nately, the estimation of these two quantities relies on the
identification of the lumen contours at ES and ED frames,
which is currently performed through tedious and error-
prone manual tracing.

In the present study, we described a fully-automated ap-
proach to lumen identification and segmentation, allowing
direct aortic distensibility estimation, as a basis for aIMT
and PP estimation, and we tested it against manual trac-
ing. Qualitative analysis of the obtained results showed
that the proposed technique is able to reliably delineate lu-
men contours even in complex cases, e.g. in images with
low contrast-to-noise ratio or in the presence of other ves-
sels (see Fig. 3). The quantitative comparisons between
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automatically obtained and manually extracted lumen di-
ameter values (reported in Table 1, central column) suggest
the high agreement between the proposed technique and
manual tracing (R = 0.94). These findings are confirmed
by the comparisons between automatically and manually
estimated A D values: however, inter-technique agreement
for this quantity is lower, potentially due to issues related
to the sinusoidal fitting.

In conclusion, fully-automated aortic lumen contours
delineation - and subsequent distensibility quantification
- from US image sequences is feasible, and could serve as
a basis for automated aIMT and PP estimation, allowing
improved IUGR assessment.
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