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Abstract 

We develop an automatic method to generate a set of 
4D 1-to-1 corresponding surface meshes of the right 
ventricle (RV) which are motion registered over the 
whole cardiac cycle. The inputs are a set of 3D RV 
surface meshes at different phases of the cardiac cycle, 
each reconstructed independently from border-delineated 
MR images. To generate point correspondence, a 
template mesh is matched to the actual shape of the RV 
meshes in each of the time phases. This is done via a 
coarse matching phase and a fine matching phase. In the 
former, an initial rough matching between the template 
and the target is achieved using a radial basis function 
(RBF) morphing process. The feature points on the 
template and target meshes are automatically identified 
using a parameterization method. In the latter, a 
progressive mesh projection process is used to conform 
the rough estimate to fit the exact shape of the target. In 
addition, an optimization-based smoothing process is 
used to achieve superior mesh quality and continuous 
point motion. Eight healthy volunteers were recruited for 
MRI scanning and the algorithm was tested on the 
acquired data. It was observed that the algorithm took an 
average of approximately 70 seconds to complete. The 
maximum absolute deviation of the matched model from 
the original geometry was 0.187mm. 

1. Introduction

In contrast to the left ventricle (LV), the anatomy of 
the right ventricle (RV) is relatively more complex and 
can vary significantly in patient cohort, such as patients 
with repaired tetralogy of fallot (rTOF). Many studies 
have shown that MRI is a superior approach to quantify 
3D ventricular geometry and function [1-4], as compared 
to echocardiography [5], ventriculography [6] 
angiography [7] and indicator-dilution methods [8]. In 
patients with demonstrable severe pulmonary 
regurgitation (PR) and borderline RV function, serial 

MRI assessment becomes mandatory for timing of 
pulmonary valve replacement (PVR) [9].  However, few 
works have focused on 4D (i.e., 3D + time) geometrical 
modelling and motion reconstruction of the RV. A lack of 
a high quality 4D RV model limits the ability to 
effectively quantitate and compare measures of RV 
morphology and function for evidence-based medicine.  

In this study, we aim to develop a computational 
method to generate a set of 4D meshes of the RV 
geometry over the whole cardiac cycle such that there is 
1-to-1 mesh correspondence across all time frames. We 
approach this problem by treating the change in RV 
morphology as a combination of geometrical operations 
as well as mechanical deformation behavior. This allows 
a more realistic way of deriving RV wall motion. 
Achieving such 1-to-1 mesh correspondence is essential 
for downstream computational processing, such as shape 
analysis, motion analysis and finite element modelling. 

2. Method

The input to our algorithm is a set of surface meshes 
representing the instantaneous shape of the endocardial 
surface of the RV. Each RV mesh represents the 
configuration at a particular time frame and is 
reconstructed from the delineated contours of the RV 
endocardium, as shown in Fig. 1. This contour-
delineation could be performed manually or by a suitable 
image segmentation algorithm [10]. 

The RV mesh at each instant (or time frame) is 
partitioned into 13 segments based on the nomenclature 
described in [11]. This 13 segments form the basis to 
generate a set of feature points for each frame of the 
cardiac cycle. The 1-to-1 mesh matching process takes 
place in two stages. In the coarse matching stage, the 
mesh representing the first frame of the cardiac cycle is 
used as a template (i.e., 0) and is mapped to the 
subsequent frames (i.e., i) of the cardiac cycle. The 
mapping is performed using a radial basis function (RBF) 
approach with progressive projection coupled with local 
smoothing to ensure robustness. The source RBF feature 
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points are selected by utilizing landmarks derived from 
the partitioning of the mesh at the first time frame; the 
corresponding RBF target feature points are selected by 
utilizing landmarks derived from the partitioning of the 
mesh at the time frame to be mapped to. In the fine 
matching stage, the morphed mesh of 0 is progressively 
projected towards i. After each step of the projection, a 
strain-energy-based optimization method is used to 
smooth the mesh. An underlying Virtual Geometry 
engine is used to preserve the geometry. Using this 
approach, we generate a 4D RV mesh model of the RV 
with 1-to-1 point correspondence at every time frame. 

 

 
Figure 1. Reconstruction of RV mesh based on delineated 
contours of the RV endocardium. 
 

  
 

Figure 2. Partitioning of RV mesh into 13 segments. 
 
2.1. Feature extraction from right 
ventricular models 

Feature extraction of the RV is done via automatic 
mesh partitioning to generate landmarks for RBF 
morphing. The partitioning is based on the nomenclature 
described in [11]. Landmarks are extracted from each 
partition by selecting points on specific parametric 
positions on the patch representing each partition. 

Essentially, each segment is populated by a 5-by-3 matrix 
of feature points, as shown in Fig. 2. These form the set 
of feature points to be used for the RBF morphing. 

 
2.2. Coarse matching using RBF morphing 

 
Given two sets of n corresponding feature points ܵ ൌ

൛p௜ൟ 	⊂ Թଷ and ܶ ൌ ൛q௜ൟ 	⊂ Թଷ (i = 1, . . . , n) that lie on 
the source mesh S and the target mesh T, respectively, 
we need to determine a function f:	Թଷ → Թଷ such that 

 niiii ...,,1)(  ppfq  (1) 

Radial Basis Functions (RBFs) are a popular means for 
interpolating scattered data for its ability to deal with 
irregular sets of data in multi-dimensional space in 
approximating high dimensional smooth surfaces [12]. 
Here, the interpolant is a function that returns the 
displacement value for each non-feature vertices of S 
and morphs them to the target shape. The displacements 
ui = qi - pi are known for the source feature points pi and 
the target feature points qi. These displacements are 
utilized to construct the interpolating function f(v) which 
returns the displacement for each mesh vertex v. Such a 
mapping can be expressed by a weighted linear 
combination of n basic functions defined by the source 
feature points and an additional explicit affine 
transformation: 
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where v ∈ Թଷ is a vertex of S, c࢏ ∈ Թଷ are (unknown) 
weights,   is the radial basis function which is a real 

valued function on [0,1),  denotes the Euclidean norm, 

܀ ∈ Թଷൈଷ adds rotation, skew, and scaling, and t ∈ Թଷ is 
a translation component. The RBF problem could be 
recast into a linear system which can then be solved using 
a standard LU decomposition with pivoting, hence 
obtaining the displacement vectors for all vertices of S.  

 
2.3. Optimization-based mesh smoothing 
using Mooney-Rivlin strain energy function 

The aim of the progressive mesh projection is to move 
0 the morphed template mesh towards the desired target 
shape i in an iterative manner to preserve the validity of 
the mesh, e.g., that there are no inversion of elements. To 
do this, we use a ray-triangle intersection test to 
determine the propagation pathway of every vertex of 0 
at every iteration. Essentially, we use the coordinates of 
each mesh vertex of 0 as the origin of a ray; we 
compute the normal vector at every vertex of 0 and use 
that as the ray vector; and we use i as the set of triangles 
to query for intersection. 

To preserve the quality of the mesh during progressive 

Each segment is 
populated by a 5-by-3 
matrix of feature points  

13 segments of the RV 
as viewed from the apex

13 segments of 
the RV in 3D 

Septal contour 
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projection, we develop an optimization-based mesh 
smoothing method to improve the quality of the mesh 
during each iteration. The central idea is to consider the 
progressive projection process as a geometrical operation 
while treating the mesh smoothing as a strain-energy-
minimization problem. As the coordinates of a mesh 
vertex is being modified in the direction of the ray, we 
compute the necessary correction to the vertex 
coordinates in the directions on the plane normal to the 
ray direction. By casting this as an energy-minimization 
problem, we can achieve a configuration that matches the 
geometrical configuration of the target, while achieving a 
mesh topology that reflects a realistic wall motion of the 
RV.  

Here, we employ the Mooney-Rivlin Strain Energy 
Function [13], since the RV is a biological entity and is 
best described by a hyperlastic model. The strain energy 
density function (W) is given by 
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where ߤ and ߣ are the Lame’s constants, ܫଵ is the first 
invariants of the right Cauchy-Green deformation tensor 
ܥ with ܥ ൌ  is ܬ ,is the deformation gradient ܨ and ܨ்ܨ
determinant of the deformation gradients with ܬ ൌ
det	ሺܨሻ. The Green-Lagrangian strain tensor is denoted by 

ܧ ൌ
ଵ

ଶ
ሺܨ்ܨ െ Iሻ, where I is the identity matrix.  

To compute the 2nd piola–kirchhoff stress tensor (S), 
we differentiate the strain energy density (W) with respect 
to the Green-Lagrangian strain tensor (E): 
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The strain energy for the constant strain triangle 
(CST), denoted by U, is then computed by 
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where t is the thickness of the CST (taken to be unity), 
and A is the area of the CST.  

The 2nd piola–kirchhoff stress tensor (S) from the 
strain energy density function (W) is derived using chain 
rule 
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Since ܥ ൌ ܧ2 ൅ ൌ൐,ܫ 	
డ஼

డா
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density function W can be re-written as a function of the 
invariants of C in the following form 
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Simplifying the above equation will lead to the final form 
of Equation (3). 

The aim of the optimization is to minimize the strain 
energy function in Eqn. (5). We employ the L-BFGS-B 
algorithm [14] which is adept at solving multivariate 
nonlinear bound constrained optimization problems. 
Essentially, the algorithm aims to minimize a nonlinear 
objective function F(x) of n variables, i.e., 
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The L-BFGS-B algorithm is based on the gradient 
projection method and uses a limited memory BFGS 
matrix to approximate the Hessian of the objective 
function F(x). The gradient gi associated with each 
variable xi is defined as 
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where xi is a small increment in xi. Convergence of the 
optimization routine will result in a smoothed mesh 
configuration which has optimal mesh quality in terms of 
deformation.  
 
3. Results 

To test the algorithm, 17 human subjects were 
recruited. MRI scanning was performed using steady-
state free precession cine gradient echo sequences on a 
1.5 T Siemens scanner (Avanto, Siemens Medical 
Solution, Erlangen). The following planes were acquired: 
ventricular 2-chamber, 4-chamber, and short-axis planes 
with 12-14 equidistant slices covering both ventricles. 
The field of view was typically 320 mm with in-plane 
spatial resolution of <1.5 mm. Each slice was acquired in 
a single breath hold, with 22 temporal phases per cardiac 
cycle. The MRI data were processed using the CMRtools. 
Short- and long-axis images were displayed 
simultaneously such that segmentation of endocardial and 
epicardial contours in the two planes proceeded 
interactively to reduce registration errors. The 
segmentation was performed manually by a trained 
cardiologist for the end-diastole (ED) and end-systole 
(ES) phases. The papillary muscles were included in the 
chamber volume to obtain smooth endocardial contours. 
The 3D meshes created within CRMtools were used as 
inputs to our algorithm.  

Our proposed method was implemented using C++ and 
the algorithm was tested on a workstation with an Intel 
Core i7-5960X CPU @ 3.00GHz, and 64Gb of RAM. 
Using our approach, we were able to achieve a 4D cardiac 
model with very high mesh quality in an automatic and 
robust manner. The motion of the time-series cardiac 
model were smooth and cyclical, and it took 70 ± 15.95 
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seconds to generate the 1-to-1 corresponding 4D model. 
 
4. Conclusion 

We had designed and implemented a viable 
computational approach to automatically generate 1-to-1 
mesh models of RV endocardial surfaces. The method 
had been successfully tested on 27 real human data 
extracted from cine-MR images and the computational 
performance suggests that real-time deployment in an 
actual clinical assessment pathway is possible. The 
availability of such a method will be beneficial to many 
new cardiac analysis methods that use 3D or 4D 
information, rather than the traditional 2D information. 
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Figure 3. 4D cardiac model at selected time phases of the cardiac cycle. The blue dot shows the tracked position of a 
particular vertex over the cardiac cycle 
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