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Abstract 

During cardiac MRI, fast switching gradients cause 

artifacts on the electrocardiogram (ECG), disturbing 

both triggering and patient monitoring. To cancel this 

noise, the Least Mean Squares (LMS) algorithm is a 

simple and efficient method. LMS uses one main 

parameter, its step size, which influences the quality of 

artifact reduction. We propose a method using the MR 

gradient variance to choose this parameter accurately 

using information about the sequence played by the MR 

scanner. The proposed method achieved systematically 

better results than the standard LMS with a 1.5T ECG 

database. 

1. Introduction

In order to achieve high spatial and temporal resolution 

during cardiac MRI, acquisitions need to be spanned over 

multiple heart beats. To avoid blurring due to heart 

movement, the detection of cardiac cycles is of 

paramount importance to trigger the MR acquisition, and 

can as well be used to monitor the patient[1]. However, 

during cardiac MRI, both the switching of magnetic field 

gradients and the magneto-hydrodynamic effect (MHD) 

constitute additional signals that alter the ECG. The 

altered ECG is less suitable, both for triggering and 

monitoring. To denoise the ECG, the Least Mean Square 

(LMS) algorithm [4, 5] is a proficient method because it 

is a simple and efficient adaptive filter[2]–[4] . Inside the 

MR bore, the measured ECG signal can be seen as the 

sum of three main components: the actual ECG, the 

magnetohydrodynamic (MHD) effect, and MR gradient 

induced artifacts [2]. This last component can be modeled 

as the output of a filter which input is the MR gradients. 

The LMS algorithm approximates the impulse response 

of this filter to remove the MR gradient artifacts from the 

ECG, as presented in Fig1. The filter models the system 

composed of the inside of the MR bore, the patient and 

the devices (antenna, ECG sensor …). It responds to the 

gradient signal with an electric response, seen as an 

artifact on the ECG. The impulse response is the main 

characteristic of this system and changes during the 

imaging.  

Figure 1: LMS correction system for one gradient lead. 

This system is parallelized three times, once for each 

gradient lead. 

The LMS uses a parameter µ that influences directly 

the speed of adaptation of the algorithm to new events  . 

A too big value for µ will cause the LMS to diverge, 

whereas a too small value will impair the LMS capacity 

to denoise. The parameter µ has a large range of possible 

values (from 10
-5 

to 10
-1

)  

According to Widrow[5], the theoretical optimal µ is : 

𝜇𝑡ℎ =
1

𝑀

2

𝜆𝑚𝑎𝑥 + 𝜆𝑚𝑖𝑛

(1) 

Where 𝜆𝑚𝑎𝑥  and 𝜆𝑚𝑖𝑛 are the highest and lowest

eigenvalues of the autocorrelation matrix of the gradients 

written as R. M is the length of the impulse response the 

algorithm is looking for, expressed in number of samples. 

As the calculation of the eigenvalues of R is often too 

complex, the following approximation has been used: 

𝜇𝑡ℎ ≃
1

𝑀

2

𝑡𝑟(𝑅)

(2) 

Indeed, the duration of the adaptation phase has to be 

short when compared to the duration of the acquisition 

sequence.  

In our case, we assume that knowing the gradient of 

magnetic field variance enables to calculate an optimal 

adaptive personalized value for µ. 
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2. Material & Methods

2.1. Population 

To validate our method, we used ECG records during 

MRI sequence and outside MRI with a standard ECG 

recorder. 13 healthy volunteers and 3 patients during a 

MRI acquisition of approximately 45 min corresponding 

to 18469 QRS complexes. All subjects/patients complied 

with the Declaration of Helsinki concerning medical 

research on human subjects and was approved by a local 

ethical committee. Among the three patients, one had a 

right bundle branch block, the two others had frequent 

ventricular extrasystoles (more than five per minute 

during the clinical ECG).  

ECG signals were acquired during various clinical MR 

sequences [6]. All signals were anonymously recorded on 

a home-made database system Archimed along with the 

DICOM images and the clinical 12-lead ECG previously 

acquired (with Schiller CS200 device) for diagnosis. 

Acquisitions were composed of ECG signals recorded 

by 3 optical ECG sensors (type3 ECG sensor, Schiller 

Medical, Wissembourg, France) modified for a larger 

frequency bandwidth (1Hz-60Hz) placed on the torso. 

MRI magnetic field gradient signals were recorded 

directly from the MR imager (GE Healthcare 1.5T 

imager). ECG signals were centralized by an MRI 

monitoring device (Maglife C, Schiller Medical, 

Wissembourg, France). These signals were digitalized 

and recorded by a home-made data-processing computer 

already reported. All signals were sampled at 1kHz. 

2.2. 3D Wiener filtering 

To assess the LMS artifact reduction efficiency, LMS 

was compared to the best possible offline filter estimator 

within linear time invariant theory[2] : a 3D Wiener filter.  

The wiener filter used as reference to evaluate the 

efficiency of the LMS was built on the following cost 

function : 

𝜑(ℎ) = ‖𝐴. ℎ − 𝑠‖2
2 + 𝜆‖𝐷ℎ‖2

2

Where: 

G = (GX, GY, GZ) = (G1, G2, G3) : gradient signal, 

shape (3xN) 

s : ECG signal (only one lead), shape (1xN). 

h : impulse response of the three gradient leads, shape 

(3xN) 

𝐴 = [

𝐺1,0 ⋯ 𝐺3,0

⋮ ⋱ ⋮
𝐺1,𝑁−𝑀 ⋯ 𝐺3,𝑁−𝑀

] 

𝐺𝑖,𝑗 = 𝐺𝑖(𝑗 + 1, 𝑗 + 2, … , 𝑗 + 𝑀)

𝐷 = 𝑑𝑖𝑎𝑔(ℎ0),

h0 : reference impulse response 

λ : regularization strength parameter. Set to 1. 

The cost function was divided into two parts : 𝜑(ℎ) =
 𝜑1(ℎ) + 𝜆𝜑2(ℎ)

The first part,  𝜑1(ℎ) = ‖𝐴. ℎ − 𝑠‖2
2 will lead h toward

a solution that fits the data. 

The second part 𝜑2(ℎ) = ‖𝐷ℎ‖2
2 will lead h toward a

solution that looks like the reference impulse response. 

Minimizing 𝜑(ℎ) leads to : 

ℎ = (𝐴𝑡𝐴 + 𝜆𝐷𝑡𝐷)−1𝐴𝑡𝑠

2.3. Step size optimization 

The theoretical optimal µ was calculated using (1) for 

each of three gradient lead, and the minimum was kept 

for each acquisition. 

𝜇𝑡ℎ =
2

𝑀
min(𝜇𝑡ℎ(𝑋), 𝜇𝑡ℎ(𝑌), 𝜇𝑡ℎ(𝑍)) 

 =
2

𝑀
min (

1

𝑡𝑟(𝑅𝑋)
,

1

𝑡𝑟(𝑅𝑌)
,

1

𝑡𝑟(𝑅𝑍)
) 

(3) 

In order to quantify the efficiency of the LMS 

algorithm during an acquisition, we computed the energy 

of the difference between LMS-corrected ECG and 3D 

Wiener-corrected ECG during gradient emission, divided 

by the time of gradient emission. This represents the 

power of the remaining noise P(µ). The better the artifact 

reduction, the smaller the noise power.  

𝑃(µ) =  ‖(𝐸𝐶𝐺𝐿𝑀𝑆(µ) − 𝐸𝐶𝐺𝑤𝑖𝑒𝑛𝑒𝑟3𝐷)‖ (4) 

The minimizer of this power, called “experimental 

optimal step size” called (µexp) was found for each 

sequence, and kept as reference for optimal LMS artifact 

reduction. The power of remaining noise using our 

predicted optimal parameterization (P(µth)) was computed 

and compared to experimental optimal parameterization 

power (P(µexp)) as follows : 

𝜀(µ𝑡ℎ) = 100.
|𝑃(𝜇𝑡ℎ) − 𝑃(𝜇𝑒𝑥𝑝)|

𝑃(0) (5) 

Finally we perform an artifact reduction with an LMS 

filter with a standard µ value, chosen as half the minimum 

of all optimal µ to ensure convergence in all cases. 

𝜇𝑠𝑡𝑎𝑛𝑑 =
1

2
min(𝜇𝑒𝑥𝑝)  (6) 

𝜀(µ𝑠𝑡𝑎𝑛𝑑) = 100.
|𝑃(𝜇𝑠𝑡𝑎𝑛𝑑) − 𝑃(𝜇𝑒𝑥𝑝)|

𝑃(0)
(7) 

We compared 𝜀𝑠𝑡𝑎𝑛𝑑 and 𝜀𝑒𝑥𝑝 to show the impact of
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choosing a different value for µ on the quantity of noise 

power removed from the ECG. 

4. Results

The variances of magnetic field gradient during each 

sequence are grouped in Tab1. The optimal values of µth 

calculated with (2) are presented in Tab2. Values of µth 

are different for each sequence, with quite narrow ranges. 

X-lead Y-lead Z-lead 

FIESTA 3,47 2,89e
-1

 3,30 

FSE 9,90e
-2

 4,21e
-2

 2,49e
-1

 

Diffusion 9,66e
-1

 8,58e
-1

 1,14 

EPI 4,70e
-2

 1,14e
-1

 3,92e
-1

 

SPGR 1,55e
-1

 7,08e
-1

 2,50e
-1

 

SSFSE 3,54e
-1

 4,22e
-2

 1,60e
-1

 

Table 1. Mean gradient variances for each sequence. 

min mean max 

FIESTA 1,40e
-3

 1,69e
-3

 2,51e
-3

 

FSE 1,57e
-2

 2,48e
-2

 3,89e
-2

 

Diffusion 3,31e
-3

 4,71e
-3

 5,55e
-3

 

EPI 9,73e
-3

 1,62e
-2

 2,47e
-2

 

SPGR 3,61e
-3

 1,39e
-2

 3,50e
-2

 

SSFSE 9,30e
-3

 1,69e
-2

 3,08e
-2

 

Table 2. Resultant optimal theoretical µ for each 

sequence.  

For each sequence, we represented the power (4) of 

remaining noise after LMS in a graph such as in Fig2. 

The power curve is converging toward a constant for very 

small values of µ (10
-3

 to 10
-5

). This constant is different 

for each patient and is the full energy of gradient-induced 

noise on ECG for this acquisition.  

While µ is getting bigger, the artifact power is 

decreasing, until it reaches a point where it is minimum. 

Afterwards, the artifact power increases rapidly, taking 

values higher than E(0). This means that the LMS induces 

more noise than the gradients themselves, i.e. that the 

LMS has diverged and is not correcting the artifacts 

anymore.  

In Tab3, are presented for each patient and sequence 

µexp=min{P(µ)}, corresponding P(µexp),  the optimal 

theoretical values µth and corresponding P(µth).  

In Tab4 we presented the percentages of noise not 

removed by LMS with µth : εth/exp, and the percentages of 

noise not removed by LMS with µstand : εstand/exp. εth/exp was 

never superior to 100% (with a maximum of 75,5% for 

the worst case during a diffusion sequence), so the artifact 

reduction was always effective. 

 

Figure 2. Power of remaining noise P(µ) after LMS for 

a FIESTA sequence for one volunteer. P(0) is the 

asymptote value, P(µexp) is the minimum and µexp is the 

experimental optimal µ. 

The diffusion sequence put aside, we achieve an LMS 

correction with less than 10% remaining noise which is 

systematically better than standard LMS. However, the 

diffusion sequence gives the worst results by far 

(ε(µth)=21,60% against ε(µstand)=41,26%).  

Fig3 shows an ECG sample with gradient artefacts, 

corrected by LMS with optimal step size, and by LMS 

with standard step size. With optimal parameterization, 

the algorithm adapts its correction very quickly to any 

change in the system, whereas with standard 

parameterization; it is very low and takes time to come 

back to efficient artifact reduction.  

Figure 3 : MR gradients (a), Raw ECG (b), 

“standard” LMS correction of ECG (c), optimal LMS 

correction of ECG (d) 

µexp P(µexp) µth P(µth) 

FIESTA 1,17e-2 3,75e-4 1,69e-3 5,49e-4 

FSE 3,85e-2 3,87e-4 2,48e-2 4,07e-4 

Diffusion 2,20e-2 3,12e-3 4,71e-3 4,87e-3 

EPI 4,97e-2 6,13e-4 1,62e-2 7,79e-4 

SPGR 2,66e-2 3,90e-4 1,39e-2 4,59e-4 

SSFSE 9,39e-3 5,46e-4 1,69e-2 6,78e-4 

Table 3: Mean values of optimal µexp and µth, with 

corresponding powers of remaining artefacts P(µ) for the 

database. 

P(µ) 

µ
µexp 

P(µexp) 

P(0) 

(a) 

(b) 

(c) 

(d) 

10
0

10
-5

10
-4
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εstandard/exp (%) εth/exp (%) 

FIESTA 37,02 9,47 

FSE 118,51 1,54 

Diffusion 48,92 21,6 

EPI 56,67 8,19 

SPGR 8,22 2,21 

SSFSE 41,26 3,58 

Table 4. Mean values of optimal µexp and µth, with 

corresponding energies of remaining artefacts E(µ) for 

the database.  

5. Discussion & conclusion

We proved that LMS theoretical optimal 

parameterization that depends on the gradient shape i.e. 

on the MR sequence parameters approaches in terms of 

remaining noise energy the LMS experimental optimal 

parameterization. This implies that knowing the sequence 

to be played and its main parameters (TE, TR, flip angle, 

…) we are able to seriously improve LMS behavior by 

adapting its coefficient µ. 

Most medical examinations use the same sequence 

several times in a row, editing few parameters, thus not 

changing significantly the gradient shape. To that extent, 

we think that calculating the variance of the gradient 

online and adapting the µ value could be a much more 

reliable option than using a default value for µ, chosen 

low enough to avoid divergence issues.  

Moreover, we expect LMS quality to improve by using 

as input the gradients measured inside the MR bore [7], 

instead of the gradient command of the MR control unit. 

That would suppress some non-linearities caused by the 

Eddy currents inside the magnet. 

However, our optimal parametrization gives arguably 

correct results on the diffusion sequence. This can be 

explained by the poor quality of LMS correction for this 

type of sequences, involving very high amplitude MR 

gradients in several directions. Actually the LMS 

diverges immediately at µ=2,51e
-2 

for this sequence, 

without reaching a stable minimum. However we 

assumed with (2) that LMS was in stable state to reach 

optimal performances. In consequences, the step size 

calculated with (2) is not appropriate to reach optimal 

performances for this sequence. Yet, the proposed 

formula still gives a better artifact reduction than a 

standard LMS. 

Even with optimal parameterization, LMS filtering 

cannot achieve good noise reduction on such sequences 

due to the fact that artifacts induced by the three gradient 

leads are not distinguished by the algorithm, and thus the 

learnt impulse response for each gradient contains 

information from other leads, causing errors. This can be 

avoided by treating the gradient information as a unique 

3D information, instead of 3 separate leads, as it is done 

in the wiener3D algorithm used as reference, but is not 

done by the LMS. 

Finally, our approach improved the efficiency of the 

LMS and proves that the parameter µ can be adapted. 

This opens the doors for an enlarged family of 

algorithms, the variable step size LMS algorithms, which 

use various techniques to control the value of µ during the 

acquisitions.  
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